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Abstract

The increased computational more speed and developments in the
area of algorithms have created the possibility to efficiently identify
a well-fitting time series model for the given time series data. In
this paper a new method is used for analyzing a given nonstation-
ary/nonlinear time series data. The method is based on the wavelet
decomposition technique where an algorithm is proposed to decom-
pose the given time series in to trend series and detail series and then
estimate each part separately using the well known threshold autore-
gressive model. Since the power spectral density can be used as a tool
for identifying the most suitable model representing the time series a
new method for estimating the power spectrum in the spectral domain
using wavelet decomposition technique is introduced. The estimated
power spectrum is used for finding the threshold value λ. The method
is applied to real world time series data and the error comparison is
carried out. In this paper a new method is used for analyzing a given

∗E-mail:lineesh@nitc.ac.in
†E-mail:jessy@nitc.ac.in

1



nonstationary/nonlinear time series data. The method is based on
the wavelet decomposition technique where an algorithm is proposed
to decompose the given time series in to trend series and detail se-
ries and then estimate each part separately. As a comparative study
real world time series data are analyzed using the developed method
and also by using the Priestley’s method and the error comparison
is carried out.It is observed that the proposed method yields better
results than the traditional method due to Priestley on account of its
simplicity and less computational error. Then efficiency of the devel-
oped method illustrative examples like (i)Wolfer sunspot time series
(ii) Laser time series and (iii) ECG time series are analyzed here. Also
the adequacy of the model obtained in each case are verified using the
normal probability plot.The method discussed here is an improvement
over the conventional Box-Jenkins method on account of its simplic-
ity and less computational time. Also the Mean Absolute Percentage
Error (MAPE) are obtained in each case.

Keywords : Non Stationary Time Series; Wavelet Decomposition;
Threshold Autoregressive Models; Scaling Coefficients; Wavelet Coef-
ficients; Power Spectral Density; Periodogram.

1 Introduction

In time series analysis the covariance function of stochastic data obtained
using the estimated models is used to compute the spectral density. The
nonparametric method using windowed peridograms outperforms the con-
ventional parametric method of estimating the PSD using autocovariances.
Peridograms may be treated as squared Fourier transform of the given time
series data. Time series models are to be preferred for spectral estimation
if the true model is known to us. Hence the covariance estimates for higher
lagged models is inefficient. Then the peridogram estimates are found to be
more efficient as they are based on high lag covariance estimates.

According to the famous Wold’s decomposition theorem a given time se-
ries can be decomposed in to a trend series and detail series which are orthog-
onal to each other. This idea gives the motivation to propose an algorithm
to decomposes a given nonstationary/nonlinear time series into trend series
and detail series.The trend series is analyzed using the ARMA models and
the detail series is analyzed using the famous Threshold Autoregressive mod-
els estimated using the wavelet decomposition technique. The scale varying
thresholds are estimated using the power spectrum estimated using wavelet
decomposition of the given time series. In this paper real world time series
data are analyzed using the developed method and a comparative study is
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made with the Priestley’s method.

2 Wavelet Decomposition Method

An algorithm is developed here to analyze the given nonstationary/nonlinear
time series and it is based on the concept of wavelet decomposition.
Given a nonstationary-nonlinear time series (Zt), it is decomposed to a trend
series CM,t and detail series

dM,t =
M∑

j=1

dj,t (1)

where dj,t is the jth level detail series, using wavelet decomposition technique.
Then the trend series CM,t and detail series dM,t are analyzed separately. The
model representing trend series can be obtained using any of the existing
trend analysis method. The threshold autoregressive models TAR(k) are
used to represent the detail series and the wavelet technique is applied to
estimate the parameters of the TAR(k) model.

3 Methods for Power Spectrum Estimation

(1) Non-parametric Method

In this method the power spectrum is estimated as the discrete Fourier trans-
form of the absolutely summable autocovarinace sequence.

(2) Parametric Method

In this method the power spectrum is estimated using the transfer func-
tion of the estimated model representing the time series. This method can
provide a better frequency resolution than non-parametric method.

4 Power spectrum Estimation using Wavelet

Transform

The discrete wavelet transform coefficients of the periodogram can be used
for estimating the power spectrum.
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Let {Zt : t = 0, 1, 2, .., N − 1} be the given time series which has a defined
logarithm of power spectral density lnGZ(exp(2πif)), |f | ≤ 0.5.
Then logarithm of the periodogram lnPZ [k] can be written as,

lnPZ [k] = lnGZ(e2πif ) + ξ(e2πif ) + γ (2)

where ξ(e2πif ) is a random process with probability distribution χ2
2 with 2

degrees of freedom and γ ≈ 0.57721 is the Euler-Mascheroni constant [2, 9].
The coefficients of the discrete wavelet transform with discrete time {Cj,m[k]}
are defined by the relation

Cj,m[k] =
N−1∑
k=0

(lnPZ [k]− γ)ψj,m[k]. (3)

where PZ [k] are samples of the periodogram of the given time series of length
2N = 2M+1 obtained by the discrete Fourier transform.
Then the required estimate of the power spectral density is given by the
inverse discrete wavelet transform,

lnPZ [k] =
1

N

M−1∑
m=1

2m∑
j=1

Cj,m[k]ψj,m[k], (4)

where k = 0, 1, 2, ..., N − 1. Also the scale dependent thresholds λj for each
level j is given by, λj = Cj,m lnN.

5 Estimation of Threshold Autoregressive

Model Using Wavelet Techniques

Let {Zt : t = 0, 1, 2, ..., N − 1} be the given time series. Decomposing Zt up
to level M gives

Zt = Xt + Yt (5)

where Xt is the trend series and Yt is the detail series given by;

Xt = CM,t;Yt = d1,t + d2,t + ...+ dM,t : t = 0, 1, 2, ..., N − 1; N = 2J (6)

where J is a positive integer.
Choose an appropriate scaling function φ and a wavelet function ψ (for ex-
ample Haar) for the analysis.
Define the scaling and wavelet coefficients as follows;

φj,k(t) = 2−j/2φ(2−jt− k) j = 1, 2, 3, ..., J ; k = 0, 1, 2, ..., 2j − 1
ψj,k(t) = 2−j/2ψ(2−jt− k) j = 1, 2, 3, ..., J ; k = 0, 1, 2, ..., 2j − 1

(7)
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where

φ(t) =

{
−2(−j/2) if 2j.k ≤ t < 2j(k + 1/2)
2(−j/2) if 2j(k + 1/2) ≤ t < 2j(k + 1)

(8)

and

ψ(t) =

{
2(−j/2) if 2j.k ≤ t < 2j(k + 1/2)
−2(−j/2) if 2j(k + 1/2) ≤ t < 2j(k + 1)

(9)

Define
αj,k =

∑N−1
t=0 φj,k(t)Xt (10)

and

βj,k =
∑N−1

t=0 ψj,k(t)Yt (11)

Using (7),

Xt =
2j−1∑
k=0

αJ,k.φJ,k(t). (12)

and using (8),

Yt =
J∑

j=1

2j−1∑
k=0

βj,k.ψj,k(t). (13)

Under the wavelet decomposition method models representing trend series
and detail series are separately estimated. The best fitting ARMA(p, q) or
regression model, T(t), is considered for trend series.
The model representing the detail series is estimated using wavelet analysis
as follows.

For j = 1, 2, 3, ..., J define λj =
√

2log(]dj,t), where (]dj,t) denotes the cardi-

nality of {dj,t}. Also define λ =
√

2log(]CN,t).

The Threshold Autoregressive model representing the detail series {Yt} is
given by,

Yt =

{
b
(1)
1 Yt−1 + b

(1)
2 Yt−2 + ...+ b

(1)
k Yt−k + e

(1)
t if Yt−d < λ

b
(2)
1 Yt−1 + b

(2)
2 Yt−2 + ...+ b

(2)
k Yt−k + e

(2)
t if Yt−d ≥ λ

(14)

where the coefficients b
(j)
i are defined by,

b
(i)
j =

{ ∑
j

∑
t d

(1)
j,t .ψ

(1)
j,t∑

j

∑
t d

(2)
j,t .ψ

(2)
j,t

(15)
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where
d

(1)
j,t = dj,t if dj,t < λj and d

(2)
j,t = dj,t if dj,t ≥ λj (16)

ψ
(1)
j,t = ψj,t if dj,t < λj and ψ

(2)
j,t = ψj,t if dj,t ≥ λj. (17)

The model representing the given time seriesZt, using wavelet decompo-
sition is obtained by combining the model representing the trend series and
the TAR(k) model which represent the detail series.

Zt =

{
T (t) + b

(1)
1 Yt−1 + b

(1)
2 Yt−2 + ...+ b

(1)
k Yt−k + e

(1)
t if Yt−d < λ

T (t) + b
(2)
1 Yt−1 + b

(2)
2 Yt−2 + ...+ b

(2)
k Yt−k + e

(2)
t if Yt−d ≥ λ

(18)

6 Analysis of Real World Time Series and

PSD Estimation

(a) Sunspot Time Series

The annual sunspot numbers for the years 1700 - 1955 is considered for
our analysis. The plot of the data is shown in figure 1.
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Figure 1: Plot of Sunspot Data

Figure 1: plot of sunspot data
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The algorithm given above is used to analyze the sunspot time series
data. The time series model is estimated using the developed method and
the error analysis is done for checking the efficiency of the developed method.
The details of the analysis are given in table 1.

Table 1: Analysis of Sunspot data using the Developed method
Threshold Estimated Model MAPE1 MSE 1

3.3302 Xt =



0.99Xt−1 − 0.0028Xt−2

−0.62Yt−1 − 8.89Yt−2

−21.7Yt−3 + e
(1)
t if Yt−1 < 3.33

0.99Xt−1 − 0.0028Xt−2

+0.0Yt−1 + 7.09Yt−2

+5.484Yt−3 + e
(2)
t if Yt−1 ≥ 3.33

0.7901% 4.4814

7



Model Estimation using Priestley’s Method

A comparative study between the model estimated using the method of
wavelet decomposition and the model estimated using Priestley’s method[6]
is done for examining the performance of the developed method.The analysis
results of the sunspot data using Priestley’s method is included in table 2.
Also the normal probability plot of the residuals obtained using Priestley’s
method is given figure 3. The error comparison shows that the wavelet de-
composition method is an improvement over the existing method due to
Priestley.

Table 2: Analysis of Sunspot data using Priestley’s method
Threshold Estimated Model MAPE2 MSE 2

35 Xt =



0.539Xt−1 − 0.196Xt−2

+0.483Xt−3 + e
(1)
t if Xt−2 < 35

0.542Xt−1 − 0.127Xt−2

+0.0168Xt−3 + 0.051Xt−4

+0.029Xt−5 + 0.45Xt−6 + e
(2)
t if Xt−2 ≥ 35

3.1828% 6.5317
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(b) Analysis of Stock Market Data

The data represents the monthly weighted-average exchange value of U. S.
Dollar starting from September 1977 to December 1998. This is a secondary
data[12]. The plot of the data is given in figure 4.
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Figure 2: plot of stock exchange data

The stock market data is analyzed using the developed method. The time
series model for the data is estimated and the details of analysis is given in
table 3.

Table 3: Analysis of stock market data using the Developed method
Threshold Estimated Model MAPE1 MSE 1

56.3214 Xt =



0.99Xt−1 − 0.0000778Xt−2

+0.1678Yt−1 + 1.2415Yt−2

+e
(1)
t if Yt−1 < 56.321

0.99Xt−1 − 0.000077Xt−2

+0.0008Yt−1 + 0.0Yt−2

+e
(2)
t if Yt−1 ≥ 56.321

1.12% 0.48

Model Estimation using Priestley’s Method

The details of the analysis of the stock exchange data using Priestley’s
method is given in table 4. Also the normal probability plot of the residuals
obtained using Priestley’s method is given figure 6. The error comparison
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shows that the wavelet decomposition method is an improvement over the
existing method due to Priestley.

Table 4: Analysis of Stock exchange data using Priestley’s method
Threshold Estimated Model MAPE2 MSE 2

90 Xt =



1.003Xt−1 − 0.4408Xt−2

+0.256Xt−3 − 0.19Xt−4

+0.31Xt−5 − 0.316Xt−6

+0.23Xt−7 − 0.179Xt−8

+0.379Xt−9 − 0.49Xt−10

+0.587Xt−11 − 0.284Xt−12

+0.404Xt−13 − 0.268Xt−14 + e
(1)
t if Xt−3 < 90

1.169Xt−1 − 0.1689Xt−2

+e
(2)
t if Xt−3 ≥ 90

1.9164% 0.5215
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(d) Analysis of IBM Stock Price Data

The data represents the daily closing IBM stock prices[13]. The plot of
the data is given in figure 10.
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Figure 3: plot of IBM stock data

The IBM stock price data is analyzed using the developed method. The
time series model for the data is estimated and the details of error analysis
is given in table 7.

Table 5: Analysis of IBM data using the Developed method
Threshold Estimated Model MAPE1 MSE 1

3.11 Xt =



0.99Xt−1 + 0.00023Xt−2

+0.31Yt−1 − 0.726Yt−2

−8Yt−3 − 37.3Yt−4 + e
(1)
t if Yt−1 < 3.11

0.99Xt−1 + 0.00023Xt−2

+0.0Yt−1 + 0.792Yt−2

+1.98Yt−3 + 2.33Yt−4 + e
(2)
t if Yt−1 ≥ 3.11

0.2044% 22.48
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Model Estimation using Priestley’s Method

The details of the analysis of the IBM stock data using Priestley’s method is
given in table 8. Also the normal probability plot of the residuals obtained
using Priestley’s method is given in figure 12. The error comparison shows
that the wavelet decomposition method is an improvement over the existing
method due to Priestley.

Table 6: Analysis of IBM Stock data using Priestley’s method
Threshold Estimated Model MAPE2 MSE 2

560 Xt =



1.293Xt−1 − 0.293Xt−2

+et(1) if Xt−1 < 560

1.13Xt−1 − 0.338Xt−2

+0.17Xt−3 + 0.145Xt−4

−0.28Xt−5 + 0.016Xt−6

−0.106Xt−7 + 0.257Xt−8

+e
(2)
t if Xt−1 ≥ 560

3.665% 25.0007

7 Power Spectral Density Estimation

The following table summarizes the estimation results of the PSD of the real
world time series discussed above using the wavelet decomposition method
and the existing method due to Priestley.

Table 7: Estimation error due to PSD Estimation
Sr. No. Time Series Error(Wavelet Method) Error(Priestley’s Method)

1 Sun spot Time Series 0.45534 0.72438
2 Federal Stock Exchange data 0.50319 0.81323
3 IBM Stock price data 0.57085 0.65227
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8 Conclusion

In this paper a new method for estimating the power spectrum of nonstationary-
nonlinear time series using the wavelet decomposition is introduced and the
method is compared with the existing method due to M. B. Priestley.
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