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Abstract: 

In this paper, an indirect boundary element method (IDBEM) is applied to calculate an incompressible 

potential flow around a prolate spheroid using linear boundary elements and such potential flow around a prolate 

spheroid is calculated using different numbers of boundary elements to approximate the body surface.. In this case, 

the indirect boundary element method with dipoles distribution is used. IDBEM is based on the distribution of 

singularities, such as sources or dipoles over the boundary of the body and computes the unknowns in the form of 

singularity strengths. With indirect boundary element method one can choose a singularity type to best model a 

given system. IDBEM is popular due to its simplicity and it is more general and flexible for the solution of a given 

problem. A comparison study between computed results for velocity distribution and analytical results is made and it 

can be seen from tables and graphs that the computed results for velocity distribution are seen to be quite good in 

agreement with the analytical results for the problem under observation. 

Keyword: indirect direct boundary element method, potential flow, axisymmetric flow, steady flow, prolate 

spheroid. 

Introducton: 

The boundary element method (BEM) is a numerical technique consisting of sub-diving the surface of the 

fluid flow field into a series of discrete elements over which the function can vary and it has been progressing for the 

last forty years due to its simplicity and efficiency. Such method is gaining popularity day by day among the 

computational and engineering communities. The term boundary element method opened eyes in the department of 

civil engineering, Southampton University, United Kingdom (Brebbia,C.A,1978). In literature, these methods 

existed under different names such as ‘panel methods’, ‘surface singularity methods’, ‘boundary integral equation 

methods’ or ‘boundary integral solutions’. In the past, finite difference method (FDM) and finite element method, 

etc. (Hirt,C.W.et al,1978, Markatos,N.G,1983, Demuran,A.O.et al,1982 and Ecer,A.,1982) were being used to find 

the numerical solutions of problems in computational fluid dynamics. But the boundary element methods offer 

important advantages over the domain type methods. One of the advantages is that with boundary element methods 

one has to define the whole surface of the body, whereas with domain methods it is necessary to discretize the entire 

flow field. So, it is easier to use, economical, cost effective and time saving due to small data than the other 

competing computational methods i.e. finite difference and finite element methods etc. The most important 
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characteristics of these methods are the much smaller system of equations and considerable reduction in data , which 

are perquisite to run a computer program efficiently. Furthermore, boundary element methods are well suited to flow 

problems with infinite domains. The boundary element methods can be classified into direct and indirect boundary 

element methods. The direct method takes the form of a statement, which provides the values of unknown variables 

at any flow field point in terms of the complete set of all the boundary data The equation of direct method can be 

formulated using either as an approach based on Green’s function (Lamb,H,1932, Milne-Thomson,L.M,1968, 

Kellogg,O.D,1929) or a particular case of the weighted residual methods (Brebbia,C.A. and Walker,S,1980). BEMs 

are classified as ‘indirect’ and ‘direct’ methods. The indirect method utilizes a distribution of singularities over the 

boundary of the body and computes this distribution as the solution of integral equation and the equation indirect 

method can be derived from that of direct method. The flow fields around three-dimensional bodies were calculated 

by using a lower-order indirect method (Hess,J.L.and Smith,A.M.O,1962,1967). The direct method was applied for 

calculating the potential flow problems (Morino.L.et al,1975). Boundary element methods are essential the methods 

for solving partial differential equations (PDEs) arising in problems in such diverse topics as stress analysis, heat 

transfer and electromagnetic theory, potential theory, fracture mechanics, fluid mechanics, elasticity, elastostatics 

and elastodynamics, etc. (Muhammad,G,.et al,2009). These methods are also being used for the solution of 

incompressible flows around complex configurations. Thus the boundary element methods are powerful numerical 

techniques receiving much attention from computational researchers and engineering community, which are offering 

the numerical solutions of a large number of flow problems of different types and the computational cost, labor and 

time in these methods are much smaller than other computational methods. 

Flow past a prolate spheroid: 

Let a prolate spheroid be generated by rotating an ellipse with semi – major axis ‘a’ and semi – minor axis 

‘b’ about its major axis and let a uniform stream of velocity  U  be in the positive direction of z – axis as shown in 

figure (1) (Shah,N.A.,2008) . 

 

 

 

 

 

 

 

 

 

The Prolate spheroid is defined by the transformation  

 z + i r  =  c cosh ζ  =  c cosh ( ξ + i η ) = c cosh ξ cosh ( i η ) + c sinh ξ sinh ( i η ) 

  = c cosh ξ cos η + i c sinh ξ sin η  

Comparison of real and imaginary parts gives 

Figure (1) 
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 z  =  c cosh ξ cos η ,   r  =  c sinh ξ sin η (1) 

Therefore the curve  ξ  =  ξ 0  is an ellipse in the   z r – plane whose semi – axes are  

 
⎦
⎥
⎤a  =  c cosh ξ 0 

 

b  =  c sinh ξ 0

    (2) 

and so   ξ  =  ξ 0   is a Prolate spheroid . 

 The stream function  ψ  for a Prolate spheroid moving in the negative direction of the z – axis with velocity  

U  is given by 

ψ  =  

1
2 U b 2 ⎝

⎛
⎠
⎞ cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  (3) 

Also , the stream function  ψ  for the uniform stream with velocity  U , in the positive direction of z – axis is given 

by 

 ψ  =  – 
1
2 U r 2  

Therefore the stream function  ψ  for the streaming motion past a fixed Prolate spheroid in the positive direction of 

the z – axis becomes 

ψ  =  – 
1
2 U r 2 + 

1
2 U b 2 ⎝

⎛
⎠
⎞ cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  (4) 

which on using (1) becomes 

ψ  =  – 
1
2 U c 2 sinh 2 ξ sin 2 η + 

1
2 U b 2 ⎝

⎛
⎠
⎞ cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  (5) 

To determine the formula for the velocity , the following relation is used (Shah,N.A.,2008) 

V 2 r 2 f ′ ( ζ ) 
–
f  ′ ( 

–
ζ )  =  ⎝

⎛
⎠
⎞ 

∂ ψ
∂ ξ  

 2

 + ⎝
⎛

⎠
⎞ 

∂ ψ
∂ η 

 2

  (6) 

Since   f ( ζ )  =  c cosh ( ζ ) 

f ′ ( ζ )  =  c sinh ( ζ )  =  c sinh ( ξ + i η ) ,     
–
f  ′ ( 

–
ζ )  =  c sinh ( ξ – i η )  

and f ′ ( ζ ) 
–
f  ′ ( 

–
ζ )  =  c 2 ( sinh 2 ξ cos 2 η + cosh 2 ξ sin 2 η ) (7) 

When   ξ  =  ξ 0 ,  then from (1) , (6) and (7) 

 V 2 c 4 sinh 2 ξ 0 sin 2 η ( sinh 2 ξ 0 cos 2 η + cosh 2 ξ 0 sin 2 η )  

 =  ⎝
⎛

⎠
⎞ 

∂ ψ
∂ ξ  

 2

ξ = ξ 0

 + ⎝
⎛

⎠
⎞ 

∂ ψ
∂ η 

 2

ξ = ξ 0

  (8) 

Now from (5) , we get 
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⎝
⎛

⎠
⎞ 

∂ ψ
∂ ξ  

ξ = ξ 0

  =  – U c 2 sinh ξ 0 cosh ξ 0 sin 2 η  

 + 
U b 2 ⎝

⎛
⎠
⎞ sinh ξ 0 + sinh ξ 0 cosh ξ 0 ln tanh 

ξ 0
2   sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  (9) 

Since for a Prolate spheroid      a  =  c cosh ξ 0 ,     b  =  c sinh ξ 0  (10) 

But tanh 
ξ 0
2   =  

a + b – c
a + b + c  =  

b
a + c  (11) 

From (9) , (10) , and (11) , we get 

 ⎝
⎛

⎠
⎞ 

∂ ψ
∂ ξ  

ξ = ξ 0

  = U sin 2 η 

⎣
⎢
⎡

⎦
⎥
⎤

 – ab + 

b 3

c  + 
ab 3

c 2  ln 
b

a + c
a
c + 

b 2

c 2 ln 
b

a + c

   

  = U sin 2 η 

⎣
⎢
⎡

⎦
⎥
⎤ 

– cb
a
c + 

b 2

c 2 ln 
b

a + c

   (12) 

and from (5) , (10) , and (11) , we obtain  

⎝
⎛

⎠
⎞ 

∂ ψ
∂ η 

ξ = ξ 0

  =  0 (13) 

Using (12) and (13) , (8) becomes 

 V 2 c 4 sinh 2 ξ 0 sin 2 η [ sinh 2 ξ 0 cos 2 η + cosh 2 ξ 0 sin 2 η ]  =  
U 2 b 2 c 2 sin 4 η

⎣
⎡

⎦
⎤ 

a
c + 

b 2

c 2 ln 
b

a + c 
 2  (14) 

But from (1) and (2) , we get      

z
a  =  cos η ,     

r
b  =  sin η  (15) 

Using (10) , (15) in (14) , we have 

V 2  =  
U 2 r 2 a 2 c 2

⎣
⎡

⎦
⎤ 

a
c + 

b 2

c 2 ln 
b

a + c 
 2

 ( b 4 z 2 + a 4 r 2 )
  (16) 

Taking square root of (16) , the magnitude of exact velocity distribution over the boundary of a Prolate 

spheroid is given by 

V  =  
U a c r

⎣
⎡

⎦
⎤ 

a
c + 

b 2

c 2 ln 
b

a + c  b 4 z 2 + a 4 r 2
  (17) 

BOUNDARY CONDITIONS: 

The boundary condition to be satisfied over the surface of a Prolate spheroid is 

∂ φp.s
∂ n   =  U ( n̂ . k̂ )  (18) 
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where  φp.s  is the perturbation velocity potential of a Prolate spheroid and  n̂  is the outward drawn unit normal to 

the surface of a Prolate spheroid 

The equation of the boundary of the Prolate spheroid 

z2

a2 + 
y2

b2 + 
x2

b2  =  1 

Let   f (x, y, z)  =  
z2

a2 + 
y2

b2 + 
x2

b2  – 1 

Then  ∇ f  =  
2 x
b2  î  + 

2 y
b2  ĵ  + 

2 z
a2  k̂  

Therefore   n̂  =  
∇ f

| ∇ f |  =  

2 x
b2  î  + 

2 y
b2  ĵ  + 

2 z
a2  k̂

⎝
⎛

⎠
⎞ 

2 z
a2  

2

 + 
⎝⎜
⎛

⎠⎟
⎞ 

2 y
b2  

2

 + 
⎝
⎛

⎠
⎞ 

2 x
b2  

2  

Thus n̂ . k̂  = 

2 z
a2

⎝
⎛

⎠
⎞ 

2 z
a2  

2

 + 
⎝⎜
⎛

⎠⎟
⎞ 

2 y
b2  

2

 + 
⎝
⎛

⎠
⎞ 

2 x
b2  

2  

 = 

z
a2

z2

a4 + 
y2

b4 + 
x2

b4

  

Therefore, the boundary condition in (18) takes the form 

 
∂ φp.s
∂ n   = U 

z
a2

b4 z2 + a4 y2 + a4 x2

b2 a2

  

  = 
z b2

b4 z2 + a4 (y2 + x2)
      (Taking U = 1) (19) 

Equation (19) is the boundary condition, which must be satisfied over the boundary of a Prolate spheroid 

For exterior flow for three-dimensional problems , the mathematical formulation for indirect boundary 

element method in terms of doublets distribution over the boundary ς of the body is given by  

− 
1
2 Φ i + φ ∞ + 

 

∫ ∫
ς–i

  Φ
∂
∂ n ⎝

⎛
⎠
⎞ 

1
4 π r  d ς  =  zi  (20) 
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Which is discretized by dividing the boundary of the body under consideration into ‘m’ elements and 

finally, it is written in matrix form as  [ H ] { U }  =  { R } (21) 

Whereas usual [H] is a matrix of influence coefficients, {U} is a vector of unknown total potentials  Φ p  

and  { R } on the R.H.S. is a known vector whose elements are the negative of the values of the velocity potential of 

the uniform stream at the nodes on the boundary of the body. 

METHOD OF ELEMENT DISTRIBUTION: 

The indirect boundary element method is applied to calculate the potential flow solution around the prolate 

spheroid for which the analytical solution is available  

Consider the surface of the sphere in one octant 

to be divided into three quadrilateral elements by joining 

the centroid of the surface with the mid points of the 

curves in the coordinate planes as shown in figure (2) 

(Mushtaq,M.et al,2009). 

Then each element is divided further into four 

elements by joining the centroid of that element with the 

mid–point of each side of the element. Thus one octant of 

the surface of the sphere is divided into 12 elements and 

the whole surface of the body is divided into 96 boundary 

elements. The above mentioned method is adopted in 

order to produce a uniform distribution of element over 

the surface of the body.  

Figure (3) shows the method for finding the coordinate (xp, yp, zp) of any point P on the surface of the sphere. 

From figures (3) we have the following equation 

|→r p|  =  1 

→
r p . →r 1  =  

→
r p . →r 2  

(→r 1 x 
→
r 2) . →r p  =  0 

or in cartesian form 

x
2
p + y

2
p + z

2
p  =  1 

xp (x1 – x2) + yp (y1 – y2) + zp (z1 – z2)  =  0 

xp (y1 z2 – z1 y2) + yp (x2 z1 – x1 z2) + zp (x1 y2 – x2 y1)  =  0 

As the body possesses planes of symmetry, this fact may be used in the input to the program and only the 

non–redundant portion need be specified by input points. The other portions are automatically taken into account. 

The planes of symmetry are taken to be the coordinate planes of the reference coordinate system. The advantage of 

the use of symmetry is that it reduces the order of the resulting system of equations and consequently reduces the 

Figure (3) 

Figure (2) 
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computing time in running a program. As a sphere is symmetric with respect to all three coordinate planes of the 

reference coordinate system, only one eighth of the body surface need be specified by the input points, while the 

other seven–eighth can be accounted for by symmetry. 

The prolate spheroids of fineness ratios 2 and 10 are discretised into 24and 96 boundary elements and the 

computed velocity distributions are compared with analytical solutions for the prolate spheroids. In both cases of 

spheroids, the input points are distributed on the surface of a sphere and the x and y-coordinates of these points are 

then divided by the fineness ratios to generate the points for the prolate spheroids. The number of boundary elements 

used to obtain the computed velocity distribution is the same as are used for the sphere. 

The calculated velocity distributions are compared with analytical solutions for the prolate spheroid of 

fineness ratios 2 and 10 using Fortran programming. 

The following table (1) shows the comparison of the computed velocities with exact velocity over the 

surface of a prolate spheroid with fineness ratio 2 using 24 boundary elements. 

TABLE 1 

ELEMENT XM YM ZM R = 
(YM)2 + (ZM)2  

COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.321E+00 -.374E+00 .161E+00 .40718E+00 .11669E+01 .11871E+01 
2 -.748E+00 -.161E+00 .161E+00 .22769E+00 .77235E+00 .93409E+00 
3 -.748E+00 .161E+00 .161E+00 .22769E+00 .77235E+00 .93409E+00 
4 -.321E+00 .374E+00 .161E+00 .40718E+00 .11669E+01 .11871E+01 
5 .321E+00 .374E+00 .161E+00 .40718E+00 .11669E+01 .11871E+01 
6 .748E+00 .161E+00 .161E+00 .22769E+00 .77235E+00 .93409E+00 
7 .748E+00 -.161E+00 .161E+00 .22769E+00 .77235E+00 .93409E+00 
8 .321E+00 -.374E+00 .161E+00 .40718E+00 .11669E+01 .11871E+01 
9 -.321E+00 -.161E+00 .374E+00 .40718E+00 .11669E+01 .11871E+01 

10 -.321E+00 .161E+00 .374E+00 .40718E+00 .11669E+01 .11871E+01 
11 .321E+00 .161E+00 .374E+00 .40718E+00 .11669E+01 .11871E+01 
12 .321E+00 -.161E+00 .374E+00 .40718E+00 .11669E+01 .11871E+01 

Graph 1 
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Comparison of computed and analytical velocity distributions over the surface of a prolate spheroid using 

24 boundary elements with fineness ratio 2 

The following table (2) shows the comparison of the computed velocities with exact velocity over the 

surface of a prolate spheroid with fineness ratio 10 using 24 elements. 

TABLE 2 

ELEMENT XM YM ZM R = 
(YM)2 + (ZM)2  

COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.321E+00 -.748E-01 .321E-01 .08139E+00 .10315E+01 .10199E+01 
2 -.748E+00 -.321E-01 .321E-01 .04539E+00 .94676E+00 .10071E+01 
3 -.748E+00 .321E-01 .321E-01 .04539E+00 .94676E+00 .10071E+01 
4 -.321E+00 .748E-01 .321E-01 .08139E+00 .10315E+01 .10199E+01 
5 .321E+00 .748E-01 .321E-01 .08139E+00 .10315E+01 .10199E+01 
6 .748E+00 .321E-01 .321E-01 .04539E+00 .94676E+00 .10071E+01 
7 .748E+00 -.321E-01 .321E-01 .04539E+00 .94676E+00 .10071E+01 
8 .321E+00 -.748E-01 .321E-01 .08139E+00 .10315E+01 .10199E+01 
9 -.321E+00 -.321E-01 .748E-01 .08139E+00 .10315E+01 .10199E+01 

10 -.321E+00 .321E-01 .748E-01 .08139E+00 .10315E+01 .10199E+01 
11 .321E+00 .321E-01 .748E-01 .08139E+00 .10315E+01 .10199E+01 
12 .321E+00 -.321E-01 .748E-01 .08139E+00 .10315E+01 .10199E+01 

Graph 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of computed and analytical velocity distributions over the surface of a prolate spheroid using 24 
boundary elements with fineness ratio 10 
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The following table (3) shows the comparison of the computed velocities with exact velocity over the 

surface of a prolate spheroid with fineness ratio 2 using 96 boundary elements. 

TABLE 3 
ELEMENT XM YM ZM R = 

(YM)2 + (ZM)2  
COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.177E+00 -.467E+00 .885E-01 .47529E+00 .12038E+01 .12048E+01 
2 -.522E+00 -.399E+00 .785E-01 .40676E+00 .11455E+01 .11521E+01 
3 -.798E+00 -.261E+00 .785E-01 .27264E+00 .94257E+00 .97640E+00 
4 -.934E+00 -.885E-01 .885E-01 .12511E+00 .48460E+00 .57150E+00 
5 -.934E+00 .885E-01 .885E-01 .12511E+00 .48460E+00 .57150E+00 
6 -.798E+00 .261E+00 .785E-01 .27264E+00 .94257E+00 .97640E+00 
7 -.522E+00 .399E+00 .785E-01 .40676E+00 .11455E+01 .11521E+01 
8 -.177E+00 .467E+00 .885E-01 .47529E+00 .12038E+01 .12048E+01 
9 .177E+00 .467E+00 .885E-01 .47529E+00 .12038E+01 .12048E+01 

10 .522E+00 .399E+00 .785E-01 .40676E+00 .11455E+01 .11521E+01 
11 .798E+00 .261E+00 .785E-01 .27264E+00 .94257E+00 .97640E+00 
12 .934E+00 .885E-01 .885E-01 .12511E+00 .48460E+00 .57150E+00 
13 .934E+00 -.885E-01 .885E-01 .12511E+00 .48460E+00 .57150E+00 
14 .798E+00 -.261E+00 .785E-01 .27264E+00 .94257E+00 .97640E+00 
15 .522E+00 -.399E+00 .785E-01 .40676E+00 .11455E+01 .11521E+01 
16 .177E+00 -.467E+00 .885E-01 .47529E+00 .12038E+01 .12048E+01 
17 -.157E+00 -.399E+00 .261E+00 .47693E+00 .12001E+01 .12059E+01 
18 -.470E+00 -.352E+00 .235E+00 .42289E+00 .11630E+01 .11659E+01 
19 -.703E+00 -.235E+00 .235E+00 .33220E+00 .10325E+01 .10695E+01 
20 -.798E+00 -.785E-01 .261E+00 .27264E+00 .94257E+00 .97640E+00 
21 -.798E+00 .785E-01 .261E+00 .27264E+00 .94257E+00 .97640E+00 
22 -.703E+00 .235E+00 .235E+00 .33220E+00 .10325E+01 .10695E+01 
23 -.470E+00 .352E+00 .235E+00 .42289E+00 .11630E+01 .11659E+01 
24 -.157E+00 .399E+00 .261E+00 .47693E+00 .12001E+01 .12059E+01 
25 .157E+00 .399E+00 .261E+00 .47693E+00 .12001E+01 .12059E+01 
26 .470E+00 .352E+00 .235E+00 .42289E+00 .11630E+01 .11659E+01 
27 .703E+00 .235E+00 .235E+00 .33220E+00 .10325E+01 .10695E+01 
28 .798E+00 .785E-01 .261E+00 .27264E+00 .94257E+00 .97640E+00 
29 .798E+00 -.785E-01 .261E+00 .27264E+00 .94257E+00 .97640E+00 
30 .703E+00 -.235E+00 .235E+00 .33220E+00 .10325E+01 .10695E+01 
31 .470E+00 -.352E+00 .235E+00 .42289E+00 .11630E+01 .11659E+01 
32 .157E+00 -.399E+00 .261E+00 .47693E+00 .12001E+01 .12059E+01 
33 -.157E+00 -.261E+00 .399E+00 .47693E+00 .12001E+01 .12059E+01 
34 -.470E+00 -.235E+00 .352E+00 .42289E+00 .11630E+01 .11659E+01 
35 -.522E+00 -.785E-01 .399E+00 .40676E+00 .11455E+01 .11521E+01 
36 -.522E+00 .785E-01 .399E+00 .40676E+00 .11455E+01 .11521E+01 
37 -.470E+00 .235E+00 .352E+00 .42289E+00 .11630E+01 .11659E+01 
38 -.157E+00 .261E+00 .399E+00 .47693E+00 .12001E+01 .12059E+01 
39 .157E+00 .261E+00 .399E+00 .47693E+00 .12001E+01 .12059E+01 
40 .470E+00 .235E+00 .352E+00 .42289E+00 .11630E+01 .11659E+01 
41 .522E+00 .785E-01 .399E+00 .40676E+00 .11455E+01 .11521E+01 
42 .522E+00 -.785E-01 .399E+00 .40676E+00 .11455E+01 .11521E+01 
43 .470E+00 -.235E+00 .352E+00 .42289E+00 .11630E+01 .11659E+01 
44 .157E+00 -.261E+00 .399E+00 .47693E+00 .12001E+01 .12059E+01 
45 -.177E+00 -.885E-01 .467E+00 .47529E+00 .12038E+01 .12048E+01 
46 -.177E+00 .885E-01 .467E+00 .47529E+00 .12038E+01 .12048E+01 
47 .177E+00 .885E-01 .467E+00 .47529E+00 .12038E+01 .12048E+01 
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48 .177E+00 -.885E-01 .467E+00 .47529E+00 .12038E+01 .12048E+01 

 

Graph 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of computed and analytical velocity distributions over the surface of a prolate spheroid using 96 
boundary elements with fineness ratio 2 

The following table (4) shows the comparison of the computed velocities with exact velocity over the 

surface of a prolate spheroid with fineness ratio 10 using 96 boundary elements. 

TABLE 4 
ELEMENT XM YM ZM R = 

(YM)2 + (ZM)2  
COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.177E+00 -.934E-01 .177E-01 .95057E-01 .10261E+01 .10205E+01 
2 -.522E+00 -.798E-01 .157E-01 .81353E-01 .10256E+01 .10186E+01 
3 -.798E+00 -.522E-01 .157E-01 .54527E-01 .10027E+01 .10099E+01 
4 -.934E+00 -.177E-01 .177E-01 .25022E-01 .86585E+00 .95627E+00 
5 -.934E+00 .177E-01 .177E-01 .25022E-01 .86585E+00 .95627E+00 
6 -.798E+00 .522E-01 .157E-01 .54527E-01 .10027E+01 .10099E+01 
7 -.522E+00 .798E-01 .157E-01 .81353E-01 .10256E+01 .10186E+01 
8 -.177E+00 .934E-01 .177E-01 .95057E-01 .10261E+01 .10205E+01 
9 .177E+00 .934E-01 .177E-01 .95057E-01 .10261E+01 .10205E+01 

10 .522E+00 .798E-01 .157E-01 .81353E-01 .10256E+01 .10186E+01 
11 .798E+00 .522E-01 .157E-01 .54527E-01 .10027E+01 .10099E+01 
12 .934E+00 .177E-01 .177E-01 .25022E-01 .86585E+00 .95627E+00 
13 .934E+00 -.177E-01 .177E-01 .25022E-01 .86585E+00 .95627E+00 
14 .798E+00 -.522E-01 .157E-01 .54527E-01 .10027E+01 .10099E+01 
15 .522E+00 -.798E-01 .157E-01 .81353E-01 .10256E+01 .10186E+01 
16 .177E+00 -.934E-01 .177E-01 .95057E-01 .10261E+01 .10205E+01 
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0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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computed values

17 -.157E+00 -.798E-01 .522E-01 .95386E-01 .10202E+01 .10206E+01 
18 -.470E+00 -.703E-01 .470E-01 .84578E-01 .10247E+01 .10191E+01 
19 -.703E+00 -.470E-01 .470E-01 .66440E-01 .10478E+01 .10150E+01 
20 -.798E+00 -.157E-01 .522E-01 .54527E-01 .10027E+01 .10099E+01 
21 -.798E+00 .157E-01 .522E-01 .54527E-01 .10027E+01 .10099E+01 
22 -.703E+00 .470E-01 .470E-01 .66440E-01 .10478E+01 .10150E+01 
23 -.470E+00 .703E-01 .470E-01 .84578E-01 .10247E+01 .10191E+01 
24 -.157E+00 .798E-01 .522E-01 .95386E-01 .10202E+01 .10206E+01 
25 .157E+00 .798E-01 .522E-01 .95386E-01 .10202E+01 .10206E+01 
26 .470E+00 .703E-01 .470E-01 .84578E-01 .10247E+01 .10191E+01 
27 .703E+00 .470E-01 .470E-01 .66440E-01 .10478E+01 .10150E+01 
28 .798E+00 .157E-01 .522E-01 .54527E-01 .10027E+01 .10099E+01 
29 .798E+00 -.157E-01 .522E-01 .54527E-01 .10027E+01 .10099E+01 
30 .703E+00 -.470E-01 .470E-01 .66440E-01 .10478E+01 .10150E+01 
31 .470E+00 -.703E-01 .470E-01 .84578E-01 .10247E+01 .10191E+01 
32 .157E+00 -.798E-01 .522E-01 .95386E-01 .10202E+01 .10206E+01 
33 -.157E+00 -.522E-01 .798E-01 .95386E-01 .10202E+01 .10206E+01 
34 -.470E+00 -.470E-01 .703E-01 .84578E-01 .10247E+01 .10191E+01 
35 -.522E+00 -.157E-01 .798E-01 .81353E-01 .10256E+01 .10186E+01 
36 -.522E+00 .157E-01 .798E-01 .81353E-01 .10256E+01 .10186E+01 
37 -.470E+00 .470E-01 .703E-01 .84578E-01 .10247E+01 .10191E+01 
38 -.157E+00 .522E-01 .798E-01 .95386E-01 .10202E+01 .10206E+01 
39 .157E+00 .522E-01 .798E-01 .95386E-01 .10202E+01 .10206E+01 
40 .470E+00 .470E-01 .703E-01 .84578E-01 .10247E+01 .10191E+01 
41 .522E+00 .157E-01 .798E-01 .81353E-01 .10256E+01 .10186E+01 
42 .522E+00 -.157E-01 .798E-01 .81353E-01 .10256E+01 .10186E+01 
43 .470E+00 -.470E-01 .703E-01 .84578E-01 .10247E+01 .10191E+01 
44 .157E+00 -.522E-01 .798E-01 .95386E-01 .10202E+01 .10206E+01 
45 -.177E+00 -.177E-01 .934E-01 .95057E-01 .10261E+01 .10205E+01 
46 -.177E+00 .177E-01 .934E-01 .95057E-01 .10261E+01 .10205E+01 
47 .177E+00 .177E-01 .934E-01 .95057E-01 .10261E+01 .10205E+01 
48 .177E+00 -.177E-01 .934E-01 .95057E-01 .10261E+01 .10205E+01 

Graph 4 
 

 

 

 

 

 

 

 

 

 

 

 



 12

 
 
Comparison of computed and analytical velocity distributions over the Surface of a Prolate spheroid using 96 

boundary elements with fineness ratio 10 

Graphs 1 and 3 show the comparison of the computed and analytical distributions over the surface of a 

prolate spheroid of fineness ratio 2 for 24 and 96 boundary elements respectively. The graphs 2 and 4 show the 

comparison of the computed and analytical distributions over the surface of a prolate spheroid of fineness ratio 10 

for 24 and 96 boundary elements respectively. The accuracy has increased with the increase of number of boundary 

elements and fineness ratio. 

CONCLUSION: 

An indirect boundary element method (IDBEM) is applied for calculation of an incompressible potential 

flow around a prolate spheroid. The computed results for flow velocities obtained by this method are compared with 

the analytical solutions for flow past a prolate spheroid. It is found from tables and graphs that the computed results 

for velocity distribution in both cases of prolate spheroids of fineness ratios 2 and 10 are seen to be quite good in 

agreement with the analytical results and the accuracy of results increases with the rise of number of boundary 

elements and fineness ratio. Indirect direct can be very useful in modeling bodies of complicated types like 

airplanes, road vehicles, space shuttle, missiles ,ships and submarines, etc.  
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