Handling Duplicate Query Results in Semantic Web Using Hash Value and Page Size
Ayesha Naseer and M.Shoaib

Department of Computer Science and Engineering

University of Engineering and Technology

Lahore, Pakistan.

shoaibuet@yahoo.com
Abstract:
Semantic Web is a web of future. The RDF is a language for representing information about the resources in the World Wide Web. When these resources are queried the problem of duplicate query results occurs. The present techniques used hash index to remove duplicate query results. We present an algorithm for detection and elimination of duplicate query results from semantic web using hash index and page size comparisons. Experimental results showed that the proposed technique removes duplicate query results from semantic web efficiently, solves the problems of using hash index for duplicate handling and can be embedded in existing SQL-Based query system for semantic web. Research can be carried out for certain flexibilities in existing SQL-Based query system of semantic web to accommodate other duplicate detection techniques as well.

Key Words: Duplicate query results, semantic web, hash index
1. Introduction

The volume of data on web is growing day by day [1]. Semantic web is the extension of the current web where semantics of information and services on the web are defined, making it possible for the web to understand and satisfy the requests of people and machines to use the web content [4]. The advancement of the semantic web has given rise to different problems related with it. One of the problems associated with semantic web is the duplicate query results [6]. Multiple data sources referring to the same real entity leads to the problem of duplicate query results. A duplicate can be defined as the exact same syntactic terms and sequences without formatting differences and layout changes [6].The current SQL-based approach to query RDF data on semantic web does not handle the problem of duplicate query results generated from multiple data sources [3].

In existing techniques [2, 6,] duplicate query results are removed by computing and comparing the hash index of query results. The major drawback of using the hash index to remove duplicate query results is that, if there is a slight change in formatting or word order, then hash index is changed and query results are no more considered as duplicate even though they have same contents [6].

This paper presents a technique to remove duplicate query results, it depends on distribution of document sizes and hash collisions will not be detected among documents of same sizes with slight change in formatting. The use of document size comparison along with hash value reduced the problems of using the hash index for duplicate detection. This technique has very low computational cost, reduced memory requirements of the system and can easily be embedded in existing SQL-Based query system of semantic web.

The rest of this paper is organized as follows: in section 2, we give the related work. We propose a technique to handle duplicate query results from semantic web in section 3. In section 4, we give results. We describe concluding remarks in section 5. Future directions are given in section 6. Finally in section 7 we give references.

2. Related Work
In this section, we describe some of existing techniques which handle the issues of removing duplicate query results from huge databases.

Guha, Ramanthan V. Los Altos (June. 27, 2000) proposed a pass-through architecture via hash techniques to remove duplicate query results. The system involved to receive the query from the user and issue the user query to a first data source. After receiving the result of first query from the first data source, the hash index is calculated for the first query result and result is passed to the user. Then the system further receives the results of second query and calculates the hash index of second query result. The first hash value is compared with the second hash value to check for the duplicate query results. If there is any hash collision then the first data source is queried to receive the results of second query, and if first data source contains data against second query then second query result is considered duplicated and discarded [2].

Chong et al (2005) proposed a SQL table function RDF_MATCH to query RDF data, which can search and infer from RDF data available on the semantic web. It also enables further processing by using standard SQL constructs. The structure of the RDF_MATCH function enables it to capture a graph pattern to be searched, RDF model and rule bases consisting of RDF data to be queried, and then provide the query results based on inference rules. The RDF_MATCH function is implemented by generating SQL queries against tables that contain RDF data. Subject-property matrix materialized join views and indexes on data and rule bases are used to improve efficiency and further kernel enhancements have been provided to reduce the run time overheads. This query scheme efficiently retrieves RDF data on semantic web but does not handle the duplicate query results problem [3].

There is no reference found which can handle the duplicate query results from the semantic web.

3. Technique for handling Duplicate Query Results from Semantic Web
Now we shall propose our technique to remove duplicate query results from semantic web.
This technique consists of following steps:

Step1.
 Issuing first query to first data source:
In this very first step the system receives a first query from the user as input, after receiving the first query the system passes that query to the first data source to get the first query results in output.

Step2.
 Issuing second query to second data source:
In the second phase of this process the system receives a second query from the user as input, after receiving the second query the system pass that query to second data source to get the second query results in output.

Step3.
 Computation of the hash index and page size of first query result:
In third step after receiving the results from first data source, we compute the hash index of the result. After computing the hash index we compute the page size of the first query result, then the calculated values of hash index and page size of first query result are stored in hash table along with the pointer to first data source. After storing this information in hash table the first query result is passed to the user.
Step4.
 Computation of the hash index and page size of second query result:
In fourth step after receiving the results from second data source, we compute the hash index of the result. After computing the hash index we compute the page size of the second query result, then the calculated values of hash index and page size of second query result are stored in hash table along with the pointer to second data source.
Step5.
 Comparison of hash indexes:
In this step the system proceeds by comparing the hash indexes of first and second query results. If the first hash index collides with the second hash index, then the first data source is queried for the results of the second query. If the first data source contains data in response to second query then second query results are considered as duplicate and are discarded.
Step6.
 Comparison of page sizes:
In this phase we see, if the first and second hash indexes are not same then the page sizes of first and second query results are compared if the page sizes of first and second query results are same then the first data source is queried for the results of second query. If the first data source contains data in response to second query then second query results are considered as duplicate and are discarded.
The block diagram of proposed technique:

[image: image1.png]T e TS
¥

o

| Recehe NewResut]

b

o e e
by

The processing steps for this approach can be written in an algorithmic form as under.

ALGORITHM: Building a module to remove duplicate query results from semantic web.

INPUT: Query Results of RDF data from a semantic data source.

OUTPUT: Query Results free of duplicates

STEP1: /* Displaying the First Query Results to User After Receiving the Query.

1.1: DO Read the user query/ problem statement.

1.2: WRITE Query to Data Source.

1.3: READ Query Results

1.4: COMPUTE Hash Index

1.5:
 COMPUTE Page Size

1.6: SAVE the Hash Index, Page Size and Pointer In Hash Table.

1.7: DISPLAY results to the user.

STEP2: /* Displaying the Further Query Results to User after Removing duplicate results.

2.1: WHILE not end of query results DO

2.2: READ the Query

2.3: COMPUTE Hash Index

2.4
COMPUTE Page Size

2.5: IF Hash Index values in STEP 2.3 IS EQUAL to the Hash Index in STEP 1.4

 DISCARD the result.
2.6
ELSE IF page size values in STEP 2.4 IS EQUAL to the page size in STEP 1.5

 DISCARD the result.
ELSE GOTO STEP 1.6

{END IF}

END {DO WHILE}

The detailed description for the process is as under:

The proposed algorithm involves receiving the query from the user and issuing the user query to a first data source. After receiving the result of first query from the first data source the hash index and page size is calculated for the first query result and result is passed to the user. Then the system further receives the results of second query and calculates the hash index and page size of second query result. The first hash value is compared with the second hash value to check for duplicate query results. If there is any hash collision then the first data source is queried to receive the results of second query, and if first data source contains data against second query then second query result is considered duplicate and is discarded. If the first and second hash indexes are not same then the first page size is compared with second page size. If the page sizes are same then again the first data source is queried to receive the results of second query. And if first data source contains data against second query then second query result is considered as duplicate and is discarded. The proposed technique is an enhancement of SQL-Based scheme to query RDF data on semantic web; it extends its functionality to remove duplicate query results.

4. Results and Discussions
Now we shall give the results of our proposed technique. The success of the proposed technique depends on the distribution of the document sizes and hash collisions will not be detected among documents of same size with slight changes in formatting and word order. We performed an experiment on data set of 15 web pages collected randomly; the links of collected web pages are given in following tables. We calculated the values of hash index and page sizes of data set. Then we manually did the slight changes in formatting and word order of web pages, and again computed the values of hash index and page sizes of same data set. Following tables and graphs show the results of computed values and their variations.

Following table 1 lists the download links of web pages, their corresponding hash values and page sizes.

[image: image2.png][T —— DS Hash vakis Pagesize
p———— S90BTHANDCCIEA S AREISHRFFY] | 311 KB
s e G31C1SADIGODEIODAI TS LIS | 0.5 KB
p— FDTsAISGESGCTITRRICE | 0.7 KB
s s 9636D3EDTASDACRST 161 MSEERIGE | 015 KB
i el e | ERCS3SAGFAABRYZTBIFHTSIBADER | 265 KB
b e TR | OVIIRVBCIASBRIIESFSCIBNSSGT) | 300 KB
o s TR zchns. | SIBBEFIELAYSOAFEDS COREINDINE | 7.5 KB
s s LEIEIBSIIEIFLATSFARENFAIESSIRY | 5.57 KB
i s 253507 CI6CHBIFDREASBIEIBTIRY | 6,97 KB
P 2BATIBSNICDESARFRIMGISDION: | 366 KB
!
p———— “ADLASFDAIFDAUDGS343EIFFACASSTSD | 265 KB
5
s . SFABSFER L ASYEANG | CRYTOAERIE | 07 KB
p okl | FISDFECIIFSASIORSCICDISEDEC | 19.5 KB
B
s s CSC1AB3334 ALS CIBCOERESDRRIURAF | 793 KB
o e TR | 0SDEFIFASCDABTRENGBUIDTS | 368 KB

Following table 2 shows the hash values and page sizes of web pages after slight changes in formatting and word order.
[image: image3.png]el Diplicare e pager VDS i vaaes Fagesars

e
T[T TR ECDE SRS TEOONT | 31T
7 [MCS b paer TS EDRS BB | 305
T [RCET v TR ATFABSWFATERF | 207E8|
T [Udvghaiony web pige | SBEFZELATOSFEDICHETODSAE | 615KE|
5 [Tacksom e poge TAFBCATE RS SCERET B
7 [FoF pme DR FASCORE RS E RS | S|
7 [FOF b it poge CECTABSSEATSCIBCIESSDE | 915K
[Fomad v g o
7 [Googe e page AAFOAFDRODESETEACA | §TE)
0| Rerradmmmrn v e TERTERTCDES RG0S | 36
T Baawes AOTRSEDATFDATDHGETFEACAITS9 | K|
T B EFCTAFAREF B ATIEDEE 5| K|
T3 B b SEDTEDTASDICE T WERF 68 E | 295
T CTAEDTRIDEIDEARTISCEE | R
TS FOF e web e FETADCCE R ARSI | S|

The results of above table shows that when we calculated the hash values and page sizes of data set of randomly collected 15 web pages after formatting changes the value of hash index changed while the values of page sizes remained the same as shown in table 2. It is concluded that, with formatting changes of web pages the page sizes remain similar while the values of hash indexes change even though the contents of web pages are similar.

Following graph 1 shows the variation of page size and hash values of collected data set of original web pages before formatting changes.

[image: image4.png]Page size

Hash iNdeX mm—

[image: image5.png]MmN momw

TomT

3

30
%

2

xmoz—

o wm oW

Web pages before formatting

Following graph 2 shows the variation of page size and hash values of collected data set of web pages with formatting changes.

[image: image6.png]TuBET @ MmN mMomT

xmoz-—

35

a0

bl

20

15

10

Web pages with formatting

 In graph 1 the thick line represents the hash indexes of original web pages, and thin line represents the page size values of original web pages. In graph 2 the thick line represents the hash values of collected web pages after formatting changes, while the thin line shows the values of page sizes of web pages after formatting changes. By the comparison of both graphs it is concluded that the page size values of web pages remain the same after formatting changes as shown by thin line in graph 1 and graph 2, while the hash indexes are changed with formatting changes in the web pages as shown by the thick lines in graph 1 and graph 2. So the above graphs show that with formatting changes of web pages the page sizes remain similar while the values of hash indexes changed even though the contents of web pages are similar. It is concluded that using the page size comparison along with hash index solve the problems of just using the hash index for duplicate detection. It does not make the system computationally complex, reduces the memory requirements of the system and can easily be embedded in existing SQL-Based query system of semantic web.

5. Conclusions
A technique to remove the duplicate query results on semantic web using hash index and page size comparison has been presented in this paper. The proposed technique involves receiving the query from the user and issuing the user query to a first data source. After receiving the result of first query from the first data source the hash index and page size are calculated for the first query result and result is passed to the user. Then the system further receives the results of second query and calculates the hash index and page size of second query result. The first hash value is compared with the second hash value to check for the duplicate query results. If there is any hash collision then the first data source is queried to receive the results of second query, and if first data source contains data against second query then second query result is considered as duplicate and is discarded. If the first and second hash indexes are not same then the first page size is compared with second page size. If the page sizes are same then again the first data source is queried to receive the results of second query, and if first data source contains data against second query then second query result is considered duplicate and is discarded.

 It is concluded that using the page size comparison along with hash index solve the problems of just using the hash index for duplicate detection. It does not make the system computationally complex, reduces the memory requirements of system. The proposed technique is an enhancement of SQL-Based scheme to query RDF data on semantic web; it further extends its functionality to remove duplicate query results.

6. Future Recommendations
Research can be carried out for certain flexibilities in existing SQL-Based query system of semantic web to accommodate other duplicate detection techniques as well. The concept of optimizing self join queries that usually occur when querying RDF data can improve the efficiency of query processing in semantic web.

7. References
[1]
T. Berners-Lee, J. Handler, O. Lassila, “The Semantic Web Scientific American”, May 2001.
[2]
Guha., R. V., L. Altos, Calif, “Pass-through architecture via hash techniques to remove duplicate query results”, June 27, 2000.

[3]
Chong E. I. Das, G. Eadon and J. Srinivasan, “An Efficient SQL-based Querying Scheme”, 2005.
[4]
Dumbill, E, “Building the Semantic Web”, 7 march 2001.

[5]
Eriksson, H, “Query Management for the Semantic Web”, 2003.

[6]
http://www.ir.iit.edu/~abdur/Research/Duplicate.html
[7]
V.A. Narayana, P.Premchand, A. Govardhan, “ Effective detection of near duplicate web documents in web crawling”, 2009.

[8]
Weifeng Su, jiying Wang, Frederick H. Lochovsky, “ Record matching over query results from multiple web data bases”, 15 April, 2009
[9]
R. G. Bello, et al, “Materialized Views in Oracle”, 1998.
[10]
Taylor, C, “An Introduction to Metadata”, 29 July 2003.

[11]
T. Berners Lee, “Relational Databases on Semantic Web", 1998.

[12]
Daniel Gomes, Mario j. Silva, Andre L. Santos, “Managing duplicates in a web archive”, April 2006.

[13]
G. Karvonuarakis, S. Alexaki, V. christophides, D. Plexousakis, M. Scholl,”RQL: A Declarative Query Language for RDF”, 7-11-2002.

[14]
Kevin Wilkinson, et al. “Efficient RDF Storage and Retrieval in Jena2”, 2003.

[15]
Haase P., J. Broekstra, A. Eberhart and Raphael, ”A Comparison of RDF Query Languages”, 2004.
[16]
Miller L, A. Seaborne and A. Reggiori, “Three Implementations of SquishQL”, 2002.

[17]
Prud'hommeaux E. and A. Seaborne, “SPARQL Query Language for RDF”, 2004.

[18]
N. Shivakumar and H. Garcia-Molina, “Finding near-replicas of documents and servers on the web”, 1999.

[19]
N. Shivakumar and H. Garc´ıa-Molina, “SCAM: A copy detection mechanism for digital documents”, 1995.

[20]
T. Denehy and W. Hsu, “Duplicate management for reference data”,October 2003.

[21]
R. J. Honicky and E. L. Miller, “A fast algorithm for online placement and reorganization of replicated data”, Apr. 2003.

