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ABSTRACT

An endoreversible Dual heat engine model is established and used to investigate the influence of the variable specific heat ratio of the working fluid on the performance of the cycle. The net work output and thermal efficiency of the cycle are derived and optimized with respect to the specific heat ratio of the working fluid. The results shows that that if compression ratio is less than certain value, the increase of specific heat ratio of the working fluid makes the net work output bigger; on the contrary, if compression ratio exceeds certain value, the increase of specific heat ratio of the working fluid makes the net work output less. The thermal efficiency increases with the increase of specific heat ratio of the working fluid throughout the compression ratio range. One can see that the maximum net work output, the working range of the cycle and the optimal compression ratio corresponding to maximum net work output decrease when specific heat ratio of the working fluid increases. However, the effects of the specific heat ratio of the working fluid on the performance of the cycle are obvious and they should be considered in practice cycle analysis. The results obtained in this paper may provide guidance for the performance evaluation and improvement of real reciprocating heat engines.
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1. Introduction

Traditional thermodynamics is a theory about equilibrium states and about limits on process variables for transformations from one equilibrium state to another. In order to obtain more realistic limits to the performance of real processes, thermodynamics is extended to finite-time thermodynamics to deal with processes which have explicit time or rate dependencies [Bejan 1996; Aragon-Gonzalez et al. 2006; Zhao and Chen, 2006; Parlak et al., 2008]. Thus, significant achievements have ensued since finite-time thermodynamics was developed in order to analyze and optimize the performances of real heat-engines [Aragon-Gonzalez et al., 2000; Chen et al., 2004; Aragon-Gonzalez et al., 2008, Ebrahimi, 2009]. 
In most models of air standard cycles, the air–fuel mixture and combustion products are approximated as ideal gases. In such cases air is assumed to be the working fluid with constant specific heats without taking into consideration the temperature dependence of the specific heats of the working fluid [Chen et al., 1998; Al-Sarkhi et al., 2002; Hou, 2004; Parlak, 2005a, b]. However, due to the high rise in combustion temperature this assumption becomes less realistic. Thus, the effects of specific heats of the working fluid on the performances of Otto [Rocha-Martinez et al. 2002; Lin and Hou 2008], Diesel [Ge et al. 2007], Dual [Ghatak and Chakrabort 2007], Miller cycles [Al-Sarkhi et al. 2006] were investigated, when variable specific heats of working fluid are linear functions of the temperature. Furthermore, the non-linear relation between the specific heat of the working fluid and its temperature was studied by Ge et al. (2008a, b).
All of the above mentioned research, the specific heats at constant pressure and volume of working fluid are assumed to be constants or functions of temperature alone and have the linear and or the non-linear forms. But when calculating the chemical heat released in combustion at each instant of time for internal combustion engine, the specific heat ratio is generally modeled as a linear function of mean charge temperature [Gatowski et al., 1984; Ebrahimi, 2006]. The model has been widely used and the phenomena that it takes into account are well knows [Klein, 2004]. However, since the specific heat ratio has a great influence on the heat release peak and on the shape of the heat release curve [Brunt, 1998], many researchers have elaborated different mathematical equations to describe the dependence of specific heat ratio from temperature [Gatowski et al., 1984; Brunt, 1998; Egnell, 1998; Lanzafame and Messina, 2003; Klein, 2004; Klein and Erikson, 2004; Ceviz and Kaymaz, 2005]. It should be mentioned here that the most important thermodynamic property used in the heat release calculations for engines is the specific heat ratio [Ceviz and Kaymaz, 2005]. So, Ebrahimi (2009) modeled the dual cycle with considerations the variable specific heat ratio during a finite time and only studied the effect of cut-off ratio on cycle performance. Therefore, the objective of this study is to examine the effect of variable specific heat ratio on the net work output and the thermal efficiency of air standard Dual cycle.
2. Thermodynamic analysis

The temperature entropy diagram of a Dual heat engine is shown in Fig. 1. The compression process is an isentropic process (
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); the heat additions are an isochoric process (
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) and an isobaric process (
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); the expansion process is an isentropic process (
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) and the heat rejection is an isochoric process (
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).

As mentioned above, it can be supposed that the specific heat ratio of the working fluid is function of temperature alone and has the following linear form:
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where 
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 is the specific heat ratio and 
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The heat added to the working fluid, during processes (
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where 
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 is the molar number of the working fluid which is function of engine speed. 
[image: image15.wmf]air

R

 and 
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 are molar gas constant and molar specific heat at constant pressure for the working fluid, respectively.

The heat rejected by the working fluid during the process (
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) is
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where 
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c

 is the molar specific heat at constant volume for the working fluid.

According to Refs [Ge et al., 2008a; Al-Sarkhi, 2007], the equation for a reversible adiabatic process with variable specific heat ratio can be written as follows:
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From Eq. (4), we get the following equation
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The compression, 
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, and cut-off, 
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, ratios are defined as
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and 
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Therefore, the equations for processes (
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) and (
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) are shown, respectively, by the following:
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The energy transferred to the working fluid during combustion is given by the following linear relation [Zhao and Chen, 2007; Chen et al., 2008].
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where 
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 and 
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 are two constants related to combustion and heat transfer which are function of engine speed. From equation (10), it can be seen that 
[image: image33.wmf]in

Q

contained two parts: the first part is 
[image: image34.wmf]A

, the released heat by combustion per second, and the second part is the heat leak loss per second, 
[image: image35.wmf](

)

24

leak

QBTT

=+

.

Thus, the net work output of the Dual cycle engine can be written as
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The thermal efficiency of the Dual cycle engine is expressed by
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When the values of 
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 into Eqs. (11) and (12), respectively, the net work output and thermal efficiency of the Dual cycle engine can be obtained. Therefore, the relations between the net work output, the thermal efficiency and the compression ratio can be derived.

3. Results and discussion
The following constants and parameter values have been used in this exercise: 
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 [Chen et al., 2006; Ghatak and Chakraborty, 2007; Ge et al., 2007; Ebrahimi, 2009]. Using the above constants and range of parameters, the characteristic curves of the net work output and efficiency, varying with the pressure ratio, and the net work output versus efficiency can be plotted.
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Figs. 3-6 display the influence of the parameters 
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 related to the variable specific heat ratio of the working fluid on the Dual cycle performance with considerations of heat transfer. From these figures, it can be found that 
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 play a key role on the work output and the thermal efficiency. It should be noted that the heat added and the heat rejected by the working fluid decrease with increases of 
[image: image70.wmf]g

o

, while increase with increasing 
[image: image71.wmf]1

k

. (see Eqs. (2) and (3)). It can be seen that the effect of 
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 corresponds to a lower value of the specific heat ratio. It can also be found from these figures that the net work output versus compression ratio characteristic is approximately parabolic like curves. In other words, the net work output increases with increasing compression ratio, reach their maximum values and then decreases with further increase in compression ratio. But, the thermal efficiency increases with increasing compression ratio. It is also clearly seen that the effects of 
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 on the work output and thermal efficiency are related to compression ratio. They reflect the performance characteristics of an endoreversible Dual cycle engine.

It can also be found from the Figs. 3 and 4 that if compression ratio is less than certain value, the increase (decrease) of 
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) will make the net work output bigger, due to the increase in the ratio of the heat added to the heat rejected. In contrast, if compression ratio exceeds certain value, the increase (decrease) of 
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) will make the net work output less, because of decrease in the ratio of the heat added to the heat rejected. One can see that the maximum net work output, the working range of the cycle and the optimal compression ratio corresponding to maximum net work output decrease (increase) about 13.7% (4.5%) and 67% (33%), 50.5% (21.4%) when 
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) increases (increases) 7.6% (200%). This is due to the fact that the ratio of heat added to heat rejected increases (decreases) with increasing 
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) in this case. It should be noted here that both the heat added and the heat rejected by the working fluid decrease with increasing 
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 (see Eq. (5)). Referring to Figs. 5 and 6, it can be seen that the efficiency increases with the increase of 
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 throughout the compression ratio range. On average, the thermal efficiency increases (decreases) by about 23% (6.2%) when 
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) increases (increases) 7.6% (200%) over a range of compression ratios from 1.1 to 19.8. 

4. Conclusion

In this paper, the effects of specific heat ratio of the working fluid on the performance of an endoreversible Dual cycle during the finite time are investigated. The analytical formulas of work output versus compression ratio and thermal efficiency versus compression ratio of the cycle are derived. The Effects of variable specific heat ratio of working fluid on the performance of the cycle are analyzed. The results obtained herein show that the effects of variable specific heat ratio of working fluid on the work output and thermal efficiency of the cycle are significant and should be considered in the design of practical Diesel engines. The detailed effect analyses are shown by one numerical example. The results can provide significant guidance for the performance evaluation and improvement of real Dual engines.
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Fig. 1. � EMBED Equation.DSMT4  ���diagram for the air standard Dual cycle











Fig. 6 Effect of � EMBED Equation.DSMT4  ��� on the variation of the thermal efficiency with compression ratio � EMBED Equation.DSMT4  ���








Fig. 5 Effect of � EMBED Equation.DSMT4  ��� on the variation of the thermal efficiency with compression ratio � EMBED Equation.DSMT4  ���





Fig. 4 Effect of � EMBED Equation.DSMT4  ��� on the variation of the net work per cycle (per unit mass of gas) with compression ratio � EMBED Equation.DSMT4  ���








Fig. 3 Effect of � EMBED Equation.DSMT4  ��� on the variation of the net work per cycle (per unit mass of gas) with compression ratio � EMBED Equation.DSMT4  ���





Fig. 2. The temperature versus compression ratio for � EMBED Equation.DSMT4  
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