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ABSTRACT  
We review the results of a model of how nucleation of a new universe occurs, 

assuming a di quark identification for soliton-anti soliton constituent parts of a scalar 

field. Initially, we employ a false vacuum  potential system; however, when cosmological 

expansion is dominated by the Einstein cosmological constant at the end of chaotic 

inflation, the initial di quark scalar field is not consistent w.r.t a semi classical 

consistency condition we analyze as the potential changes to the chaotic inflationary 

potential utilized by Guth . We use Scherrer's derivation of a sound speed being zero 

during initial inflationary cosmology, and obtain a sound speed approaching unity  as the 

slope of the scalar field moves away from a thin wall approximation. All this is to aid in a 

data reconstruction problem of how to account for the initial origins of CMB due to dark 

matter since effective field theories as presently constructed require a cut off value for 

applicability of their potential structure. This is often at the cost of, especially in early 

universe theoretical models, of clearly defined baryogenesis, and of a well defined 

mechanism of phase transitions. 

 

 Correspondence: A. W. Beckwith: projectbeckwith2@yahoo.com 

PACS numbers: 03.75.Lm, 11.27.+d, 98.65.Dx, 98.80.Cq, 98.80.-k



I. INTRODUCTION 
As of June 2005, an effort was made to combine reconstruction of data gathering 

techniques with the requirement of the JDEM dark matter-dark energy search for the 

origins of dark matter in the early universe1. This has, among other things, lead to 

methodologies being presented which could shed light as to the initial formation of scalar 

potentials which could contribute to CMB background radiation. In doing so, it was noted 

that initial dimensions, as postulated by Quin, Pen, and Silk2 presented evidence as to 

how three extra dimensions play a role in explaining how at very short distances gravity 

would have a 5−r  spatial behavior dependence in force calculations. We do believe that 

in the initial stages of cosmic inflation, that space, indeed had additional dimensions and 

that the dimensions play a role as far as nucleation of a new universe. 

 
We have, therefore, written up how to reconstruct potentials, using the methodology 

presented by Kadota et al3, but we also think that it is important to pick out properties of 

the potential in question with respect to early universe models, since CMB data as 

presently configured is too imprecise to get anything other than the standard FRW flat 

space metric, 1000 or so years after the big bang. So being the case, we have constructed 

a list of properties of what an early universe potential system, composed of di quark 

constituents in order to help researchers investigate CMB data more accurately for very 

early universe configurations.  

II. ORGANIZATION OF THE PAPER  
 

Appendix I, parts A and B highlights what can be said about typical data 

reconstruction for early universe potential systems.  Appendix II initiates setting up three 

regimes for an evolving potential model leading to chaotic inflation, in line with Dr. 



Guths quartic potential system. Appendix III presents what is done with instanton 

models of what is called in the literature, QCD balls4, for initially stable di quark pairs 

which we believe are the building blocks for a false vacuum nucleation of initial baryonic 

states of matter. Afterwards, in the main text of this document, I examine the break down 

of what Bunyi and Hsu of the U. of Oregon call a semi classical approximation5, but 

which I call a consistency condition for di quark pair contributions to Guth style chaotic 

inflation. In making this consistency evaluation, I then refer to in Appendix IV, part A 

and B how and why the initial wave functionals used in forming this semi classical 

evaluation are formed. This uses the results of two accepted world press scientific 

articles, one published in IJMPB 6, and also another accepted already for publication in 

Modern Physics Letters B 7, which describe necessary and sufficient conditions for a 

false vacuum based construction of Gaussian wave functionals, which then have, due 

to the very short distances involved, a discrete state presentation which is then used 

in an inner product evaluation of potential systems. 

 
It is interesting to note that the semi classical (consistency) condition so outlined in 

the main text works best initially for a modified driven washboard potential system, 

which is integrated over six dimensions, in line with Silks presentation as to the 

importance of higher dimensions being very significant for extremely small spatial 

dimensions. This is given more structure in Appendix V. I do believe that this is no 

accident, and is congruent with the Calabi Yau conjecture in string theory with the 

curling up of higher spatial dimensions, which after a certain phase in inflation no longer 

contribute significantly to the chaotic inflation paradigm presented by Guth8.  

 
 
 



How does this bend in with more observational techniques as given by astrophysics 

researchers? Early universe nucleation is too small a region of space for typical action 

integral arguments to be effectual. So I have presented an alternative, as given in 

Appendix VII, which I do believe is able to give a new structure as to how to consider 

the flux of particles from a cosmic nucleation stand point9. In addition, the initial 

configuration of matter states would not be treatable by the Einstein cosmological 

constant. But that the evolution of di quark states can, after the onset of inflation, evolve 

into an Einstein cosmological constant dominated epoch, as given by an argument based 

upon a modified Scherrer k essence argument. This argument is important, and is in the 

main text of this document. All of this has been presented in PANIC 2005, and will be 

included in the AIP proceedings of that conference10.  

 
This last step depends upon a break down of a thin wall approximation. I do believe 

that this is consistent with the quantum fluctuations of momentum discussed in the paper 

written by R. Aloisio11 et al, about deformed special relativity and its relations to a 

supposed quantum gravitational background.  

 
Finally, I make direct connection with Venzianos12 postulates as to the links between 

Planck scale length, a scalar field term, and a wavelength approximately in sync with the 

initial scale of a nucleating universe. I suggest here that the initial cosmic nucleation 

diameter was of the order of Planck Length, and subsequently radically expanded 

afterwards, in a result consistent with cosmic inflation.  

 
The initial impetus for making this effort was due to the following conundrum. As is 

commonly known in cosmology circles, one would expect a flat Friedman – Walker 



universe after 60 e-foldings, but beforehand one could expect sharp deviations as to flat 

space geometry. The moment one would expect to have deviations from the flat space 

geometry would closely coincide with Rocky Kolb’s model for when degrees of freedom 

would decrease from over 100 degrees of freedom to roughly ten or less during an abrupt 

QCD phase transition13. As was mentioned by Joe Lykken , the CMB model should yield 

a distinct ‘signal’ which is lending toward a non flat cosmological metric space potential 

which can be seen to be initiating a phase transition at about the end of the 60 e-folding 

regime of cosmological expansion14. My own model is useful for such QCD phase 

transitions; while Kenji Kadoka’s potential reconstruction scheme is not specific as to a 

UNIQUE potential structure. It would be enough in itself to try to combine the two 

techniques as to go before the thousand year mark Kenji mentioned as to data sets 

permitting potential reconstruction, and to find evidence as to CMB background as to the 

initial phases of CMB generation leading to the datum Kolb mentioned as to the decrease 

in cosmic microwave radiation to its present value as a result of a QCD phase transition 

in the expansion of the early universe. 

III. BRIEF RE CAP OF QINS EXTRA DIMENSIONS FROM DARK 
MATTER ARTICLE, PLUS THE EVOLVING POTENTIAL SYSTEM 
ACCOMODATING DI QUARK SCALAR FIELDS 

As mentioned, Quinn’s article2 gives a new force law, with respect to distances at or 

below  in length. As presented in the article nm1 10, this appears to be a verification of the 

existence of small but non infinitesimal extra dimensions. The key assumption which was 

used in their paper was a force law of the general form for distances Rr << : 

nr
GMmF +⋅= 2α  (3.1) 



Here, α  is a constant with dimensions [ ]nlength , G is the gravitational constant, and M 

and m are the masses of the two particles and.  was set , while the value of  was, 

partly to fit with an argument given by Volt and Wannier

nR≡α n

15 that the quantum mechanical 

cross section for collision is twice the corresponding classical value, if one assumes a 

central force field dependence of 5−r  This all together, if one assumes that initially r  is 

of the order of magnitude of Planck’s length would lead to extremely strong pressure 

values upon the domain walls of a nucleated scalar field initial states, which I claim 

would lead to a quite necessary collapse of the thin wall approximation. This collapse of 

the thin wall approximation set the stage for an Einstein constant dominated regime in 

inflation, if one adheres to a version of Scherrer’s K essence theory

Pl

16results for modeling 

the di quark pairs used as an initial starting point for soliton-anti soliton pairs(S-S’) in the 

beginning of quantum nucleation of our universe.10 

 

We should note that Appendix I as given gives a necessary and sufficient condition for 

constructing a potential system, initially in the false vacuum mode of potential, due to a 

pop up of a di quark state10.  Here, for reasons of scale, we set  as a Planck mass, and 

the 2

PM

nd mass, m, as considerably smaller. The scalar field term φ   is constructed in terms 

of di quarks , in line with the soliton- anti soliton (S-S’) used in the two accepted articles 

using similar constructions in IJMPB, etc 6,7, and  is, here, picked in terms of the limits 

of quantum fluctuations of a scalar field, in line with Guths model of chaotic inflation

∗φ

17. 

Furthermore we write the potentials ,  and  in terms of S-S’ di quark pairs 

nucleating and then contributing to a chaotic inflationary scalar potential system

1V ,2V 3V

10. 
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The difference between these potentials becomes extraordinarily important in considering 

how the nucleating universe system evolves in time from the onset of the big bang itself. 

Furthermore, as a convenience, I have bench marked the  term via the following 

procedure. We consider if and when we have classical and quantum fluctuations 

approximately giving the same value for a phase value of 
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where we have set    as   the typical Planck mass which we normalized to being unity 

in this paper for the hybrid false vacuum – inflaton field  cosmology example  , as well as 

having set the general evolution of  our scalar field as having the form of 
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This then permits us to look at how consistent having a di quark model, with a thin wall 

approximation is, with the evolving potential system, given above. It is important, since 

we are finding that having the additional dimensions specified in the beginning permits 

us to have a more physically consistent picture of how the phase transition to an Einstein 

constant dominated cosmology occurs in the first place. This is especially relevant from 

going from the 1st to the 3rd potential given above. Appendix III presents what is done 



with instanton models of what is called in the literature, QCD balls4, for initially stable di 

quark pairs, which is what we are assuming with this construction of φ , and we can use 

to obtain S-S’ type pairs which are then used to construct wave functional representation 

of early universe states. This is in part based upon Appendix IV, part A and B on how 

and why the initial wave functional used in forming this semi classical evaluation are 

formed. This uses the results of two accepted world press scientific articles, one 

published in IJMPB 6, and also another accepted already for publication in Modern 

Physics Letters B 7. The important thing to consider here, though is that we are 

looking at understanding the existence of the phase transformation from the first to 

the third potential occurs, and what it says about the formation of conditions 

relevant toward an Einstein constant dominated cosmology 

IV: CRITERIA USED BY BUNYI AND HSU, WHICH WE CALL A 
CONSISTENCY CONDITION REFLECTING THE OCCURANCE 
OF A PHASE TRANSITION. 
 

Let us first consider an elementary definition of what constitutes a semi classical 

state. As visualized by Buniy and Hsu,5 it is of the form a  which has the following 

properties: 

i) Assume 11 =aa  

(Where 1 is an assumed identity operator, such that 1 a = a ) 

ii) We assume that a  is a state whose probability distribution is peaked about a 

central value, in a particular basis, defined by an operator Z  

a) Our assumption above will naturally lead, for some n values 

( nn aZaaZa ≡ )  (4.1) 



Furthermore, this will lead to, if an operator Z  obeys Eq. (4.1) that if there exists another 

operator, call it Y which does not obey Eq. (4.1), that usually we have non commutativity 

[ ] 0, ≠ZY  (4.2) 

Buniy and Hsu5 speculate that we can, in certain cases, approximate a semi classical 

evolution equation of state for physical evolution of cosmological states with respect to 

classical physics operators. This well may be possible for post inflationary cosmology; 

however, in the initial phases of quantum nucleation of a universe, it does not apply. We 

do this with a potential system, with S-S’ di quark constituents we model via using10  

 

( ) ( )[ xxbxxb ba ]−+−⋅≡ tanhtanhπφ  (4.3) 

We can, in this give an approximate wave function as given by a discretized version of 

the wave functional given for the first potential system as in Appendix IV, B: 

( )( xc )φαψ ⋅−⋅≅ ~exp1  (4.4) 

Then we can look to see if we have5,10  
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This was later generalized, in the initial phases of nucleation for the 1st potential system 

as being, in six initial dimensions 
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In addition, the analysis of how to work with a ratio of  the values of  the left and right 

hand sides of eq (4.5 and (4.6)as a way of looking at the consistency of what has been 

called the semi classical approximation would lead to analyzing 
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The first coefficient, i, denotes which potential system is picked, and ranges in value 

from 1 to 3. The second coefficient, n, is either 0 or 3, depending upon what 

dimensionality is assumed for this problem. The third coefficient, N, is freely ranging in 

values from 1 up to 100. I as a convenience often worked with N= 9. This eventually led 

to the calculations of Appendix V, which highlight the importance of higher 

dimensionality in the initial stages of nucleation, for the first potential system. 

 

Assuming that this is a valid initial dimensional approximation, we did the following 

for the three potentials. 

a. Assumed that the scalar wave functional term was decreasing in ‘height’ and 

increasing in ‘width’ as we moved from the first to the third potentials.φ  also had 

a definite evolution of the domain wall from a ‘near perfect’ thin wall 

approximation to one which had a considerable slope existing with respect to the 

wall.  

b. We also observed that in doing this sort of model that there was a diminishing of 

magnitude from unity for  Eq. (4.7) for large N values, regardless if or not the thin 



wall approximation was weakened as we went from the first to the third potential 

system. In doing to, we also noted that even in Eq. (4.7) for the first potential, 

Eq. (4.7) had diminishing applicability as a result for decreasing b values in 

Eq. (4.3), which corresponded to when the thin wall approximation was least 

adhered to.  

We also observed that for the third potential, that there was never an overlap in value 

between the left and right hand sides of Eq. (4.5) and Eq. (4.6), regardless of whether the 

thin wall approximation was adhered to. In other words, the third potential was least 

linkable to a semi classical approximation of physical behavior linkable to a physical 

system, while Eq. (4.5) and Eq. (4.6) worked best for a thin domain wall approximation 

to Eq. (4.4) in the driven sine Gordon approximation of a potential system. In all this, we 

assumed that the small perturbing term added to the ( ))cos(1 φ−  part of Eq. (3.2a) was a 

physical driving term to a very classical potential system ( ))cos(1 φ−  which had a 

quantum origin consistent with the interpretation of a false vacuum nucleation of the sort 

initially formulated by Sidney Coleman.18 Furthermore, as we observed an expanding 

‘width’ in Eq. (4.3), the alpha term in Eq (4.4) shrank in its value, corresponding to a 

change in the position of constituent S-S’ components in the scalar field given in this 

model. The S-S’ terms roughly corresponded to di quark pairs.  

c. Chaotic inflation in cosmology is, in the sense a quartic potential portrayed by 

Guth,17 a general term for models of the very early Universe which involve a short 

period of extremely rapid (exponential) expansion; blowing the size of what is 

now the observable Universe up from a region far smaller than a proton to about 

the size of a grapefruit (or even bigger) in a small fraction of a second. This 

process smoothes out space-time to make the Universe flat, but is not in the model 

presented linkable in the chaotic inflationary region given by the third potential to 

any semi classical arguments. The relative good fit of Eq. (4.7) for the first 



potential is in itself an argument that the thin wall approximation breaks down 

past the point of baryogenesis after the chaotic inflationary regime is initiated by 

the third potential as modeled by Guth.17

 

Since we have established this, we should then attempt to consider if the higher 

dimensional physical state relevant to the 1st potential system are countable. Yes they are, 

but not by ordinary least action principal arguments19. I give a variant of what could be 

analyzed in Appendix VII, after stating that the earlier least action counting algorithms 

referenced in Appendix VI (summary of Garrigas work)20 is not germane to such a small 

scale physical system.  This then leads to to consider what the evolving state of di quark 

pairs says about , from a Scherrer k essence stand point of how the evolution to Guth 

chaotic inflation, as given by the third potential corresponds to the rise of an Einstein 

constant  dominated inflationary cosmology10. 

 

V.HOW DARK MATTER TIES IN, USING PURE KINETIC K 
ESSENCE AS DARK MATTER TEMPLATE FOR A NEAR THIN 
WALL APPROXIMATION OF THE DOMAIN WALL FOR φ  

We define k essence as any scalar field with non-canonical kinetic terms. Following 

Scherrer,10,21,22we introduce a momentum expression via 

( )XFVp ⋅= )(φ  (5.1) 

where we define the potential in the manner we have stated for our simulation as well as 

set10,21,22 

φφ µ
µ ∇∇⋅=

2
1X  (5.2) 



and use a way to present F expanded about its minimum and maximum10,21,22 
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where we find that the potential neatly cancels out of the given equation of state so10,21,22 
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as well as a growth of density perturbations terms factor Garriga and Mukhanov20 wrote 

as 
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where , and since we are fairly close to an equilibrium value, we pick a 

value of X close to an extremal value of .

22 / dXFdFXX ≡

0X 10,21,22 
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where, when we make an averaging approximation of the value of the potential as very 

approximately a constant, we may write the equation for the k essence field as taking the 

form (where we assume φφφ ddVV /)(≡ )
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as approximately 

( ) 032 ≅⋅⋅⋅+⋅⋅⋅+ φφ &&&
XXXX FHFXF  (5.9) 

which may be re written as10,21,22 

( ) 032 ≅⋅⋅⋅+⋅⋅⋅+ XFHXFXF XXXX
&&&  (5.10) 

In this situation, this means that we have a very small value for the growth of density 

pertubations10,21,22 
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when we can approximate the kinetic energy from 
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and, if we assume that we are working with a comparatively small contribution w.r.t. time 

variation but a very large, in many cases, contribution w.r.t. spatial variation of phase 
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We get these values for the phase φ  being nearly a box, i.e. the thin wall 

approximation for b being very large in Eq. (4.3); this is consistent with respect to 

Eq. (5.13) main result, with ⇒≅≡ 0
ρ
pw  treating the potential system given by the first 

potential (modified sine Gordon with small quantum mechanical driving term added) as a 

semi classical system leading to Eq. (4.7) nearly being unity. This also applies to the 

formation of S-S’ pair formation due to the di quarks as alluded to in Zhitinisky’s16 

formulation of QCD balls with an axion wall squeezer having a ‘thin wall’ character.   

When we observed 
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with  
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as the slope of the S-S’ pair approaches a box wall approximation in line with thin wall 

nucleation of S-S’ pairs being in tandem with  larger. Specifically, in our 

simulation, we had 10 above, rather than go to a pure box style representation of 

S-S’ pairs; this could lead to an unphysical situation with respect to delta functions giving 

infinite values of infinity, which would force both  and 

→b

→b

2
sC

ρ
pw ≡  to be zero for 



∞→
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂
∂

⋅≅≈

2

0 2
1

x
XX φ  if the ensemble of S-S’ pairs were represented by a pure thin 

wall approximation,20 i.e., a box. If we adhere to a finite but steep slope convention to 

modeling both  and 2
sC

ρ
pw ≡ , we get the following: When  we obtain the 

conventional results of  

10≥b

1~
41

1

2

00
−→

⋅
⋅−

−
≅

F
X

w
ε

 (5.16) 

and recover Scherrer’s solution for the speed of sound 10,21,22 
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(If an example ,3
2 10→F 2

0 10~ −→ε , ). Similarly, we would have if  in 

Eq. (4.5) 
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if  ,3
2 10→F 2

0 10~ −→ε . Furthermore →0X  a small value, which for  in Eq. (5) 

would lead to , i.e., when the wall boundary of a S-S’ pair is no longer 

approximated by the thin wall approximation. This eliminates having to represent the 

initial state as behaving like pure radiation state (as Cardone

3→b

12 ≈SC

23 postulated), i.e., we then 

recover the cosmological constant. When 0
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have a hierarchy of evolution of the universe as being first radiation dominated, then dark 

matter, and finally dark energy.  
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sense; so, in this problem, we then refer to the contributing slope as always being large 

but not infinite. We furthermore have, even with 1−=w  

11 31
2 ⎯⎯ →⎯≡ →bsC    (5.20)

indicating that the evolution of the magnitude of the phase  corresponds with a 

reduction of our cosmology from a dark energy dark matter mix to the more standard 

cosmological constant models used in astrophysics. This coincidently is when the semi 

classical evaluation involving S-S’ di quark pairs breaks down, as given by Eq. (4.7) 

being much smaller than unity and corresponds to the b of Eq. (4.3) for being 

quite small. It also denotes a region where there is a dramatic reduction of the degrees of 

freedom of the FRW space time metric, as Kolb postulated

+→ εφ

+→ εφ

24,25 so that we can then 

visualize cosmological dynamics being governed by the Einstein constant at the 

conclusion of the cosmological inflationary period 



VI: CONCLUSION 
Veneziano’s model 12 gives us a neat prescription of the existence of a Planck’s length 

dimensionality for the initial starting point for the universe via: 

φαλ el GAUGESP ≈≈22  (6.1) 

where the weak coupling region would correspond to where 1−<<φ  and Sλ  is a so 

called quanta of length, and  . As Veneziano implies by his 2cmtcl PP
3310~ −⋅≡ nd  

figure 6  , a  so called scalar dilaton field with these constraints  would have behavior seen 

by the right hand side of his  figure one, with the ( ) +→ εφV   but would have no  

guaranteed false minimum TF φφφ <→  and no ( ) ( )FT VV φφ < . The typical string models 

assume that we have a present equilibrium position in line with strong coupling 

corresponding to   but no model corresponding to potential barrier 

penetration from a false vacuum state to a true vacuum in line with Coleman’s 

presentation.

( ) ( ) +≈→ εφφ TVV

5,20 However, FRW cosmology26 will in the end imply  

cmuniverseofsizeondst P
242 10sec10~ −− ≈⇒  (6.2) 

 

which is still huge for an initial starting point, whereas we manage to in our S-S’ 

‘distance model’ to imply a far smaller but still non zero radii for the initial ‘universe’ in 

our model.  

We find that the above formulation in Eq. (6.1) is most easily accompanied by the 

given S-S’ di quark pair basis for the scalar field used in this paper, and that it also is 

consistent with the initial scalar cosmological state evolving toward the dynamics of the 

cosmological constant via the k essence argument built up near the end of this document. 



Furthermore, we also argue that the semi classical analysis of the initial potential system 

as given by Eq. (4.7) and its subsequent collapse is de facto evidence for a phase 

transition to conditions allowing for CMB to be created at the beginning of inflationary 

cosmology.  

We are fortunate as shown in Appendix V that for determining the relative good fit 

of Eq. (4.7) that the relative domain walls slope of the initial phase given by Eq. (4.5) 

was not terribly significant, for the first potential system, which dove tails with Eq. (4.1) 

merely pushing out the domain walls, as a primary effect, for a driven sine Gordon type 

modeling of false vacuum nucleation. As ,mentioned earlier, this was actually heightened 

by the extra dimensionality as alluded to by the power law relationship in Eq. (4.1) 

making an almost perfect equality between the left and right hand sides of Eq. (4.7). That 

the ratio Eq. (4.7) in Appendix V had varying values, showing different degrees of break 

down of this relationship for the 2nd  transitional potential, due to differences in 

dimensionality and slope of the scalar field as given by Eq. (4.3) is probably due to this 

representing the abrupt loss of numbers of degrees of freedom Rocky Kolb has 

mentioned as part of a phase transition. Needless to say though, as we evolve toward the 

Einstein cosmological constant era and chaotic inflation, as given by the 3rd potential, we 

should keep in mind very real limits as to the comparative sharpness of the slope of the 

scalar field as given by Eq. (4.3) 

K essence analysis argues against making b in Eq. (4.3) too large, i.e., if we have a 

‘perfect’ thin wall approximation to our S-S’ di quark pairs, we will have the unphysical 

speed of sound results plus other consequences detailed in the k essence section of the 

document which we do not want. On the other hand, the semi classical analysis brought 



up in the section starting with Eq. (4.5), Eq. (4.6) and summarized by Eq. (4.7) shows us 

that a close to the thin wall approximation for S-S’ di quark pairs gives an optimal fit for 

consistency in the potential with the wave functions exhibiting a thin wall approximation 

‘character’. It is useful to note that our kinetic model can be compared with the very 

interesting Chimentos 27purely kinetic k –essence model, with density fluctuation 

behavior at the initial start of a nucleation process. The model indicate our density 

function reach =ρ  constant after passing through the tunneling barrier  as mentioned in 

our nucleation of  a S-S’ pair ensemble. This is when the Einstein constant becomes 

dominant and that the semi classical approximation in Eq. (4.7) for a domain wall at the 

time the comparative thin wall approximation S-S’ pair ceases to be relevant.  

 Our initial attempt here very likely should be re visited, especially if the sort of brane 

world objects referred to by Trodden et a28 are used in a future calculation for initial 

nucleation states. However, this should all be done to re calibrate how to fill in the CMB 

contribution toward reconstruction of a suitable class of potentials which could shed light 

not only on the origins of baryogenesis, in early universe models, but also in determining 

how dark matter-dark energy could contribute to the formation of initial inflationary 

cosmology parameters. The hope is that if suitable data reconstruction methodology is 

obtained and refined, that one could as an example determine how the initial physical 

fundamental constants could be set as they are, as well understand how dark matter-dark 

energy contribute to the initial origins of CMB itself This also would allow us to improve 

upon the particle flux from nucleation argument we used, using Gongs 29 approximate 

construction in order to get around limitations in least action principles due to tiny spatial 

dimensions. 



[Insert figures 1a, 1b, and then figures 2a, 2b with captions here] 

Furthermore, we should note that these nucleation configurations fit in well with the 

following model of false vacuum nucleation.  

[Insert figure 3 with caption here] 

This is in line with the first specified potential as given in Eq. (3.2a) which we claim 

eventually becomes in sync with Eq. (3.2c). Further progress in investigating this 

phenomenology should take into account the datum so mentioned in the text, about the 

original multiple dimensions in the initial phases of a nucleating universe, which 

subsequently are reduced as the scalar potential evolves toward the chaotic potential 

given in Eq. (3.2c). This should permit us to be able to reconstruct potentials far closer to 

the big bang itself, than the 1000 or so year limit alluded to by Dr. Kadota in his May 

2005 Pheno talk given in Madison, Wisconsin30.  This in its own way will entail 

considerable additional analytical work, along the lines first specified by Edmund J. 

Copelan et al. in their ground breaking tome on potential reconstruction techniques 

applied to cosmology31 .It is worthwhile to note that the orientation of my white paper 

was in unifying certain techniques, and methodology of what is known in the literature as 

QCD balls in an instanton configuration to use data reconstruction in order to obtain 

information on dark matter physics. In doing so, I wound up using a lot of ideas, as was 

done by other physicists considering early universe nucleation models, from condensed 

matter physics. The emphasis though of the presented concept was in setting up a 

template as to examine what actually constitutes dark matter. This should be what future 

inquiry should be directed toward. 



Figure captions  

   

Fig 1a,b: Evolution of the phase from a thin wall approximation to a more nuanced 

thicker wall approximation with increasing L between S-S’ instanton components. The 

‘height’ drops and the ‘width’ L increases correspond to a de evolution of the thin wall 

approximation. This is in tandem with a collapse of an initial nucleating ‘potential’ 

system to the standard chaotic scalar  potential system of Guth. As the ‘hill’ flattens, 

and the thin wall approximation dissipates, the physical system approaches standard 

cosmological constant behavior.  

2φ

Fig 2a,b: As the walls of the S-S’ pair approach the thin wall approximation, a 

normalized distance,  L = 6  = 3, approaches delta function behavior at the 

boundaries of the new nucleating phase. As L increases, the delta function behavior 

subsides dramatically. Here, the 

→= 9L L→

⇔= 9L  conditions approaching a cosmological 

constant. L= 6 ⇔  conditions reflecting Scherrer’s dark energy-dark matter mix. 

L  = 3 ⇔  approaching unphysical delta function contributions due to a pure thin wall 

model.   

Fig 3:  Initial configuration of the domain wall nucleation potential as given by 

Eq. (4.4a) which we claim eventually becomes in sync with Eq. (4.4c) due to the phase 

transition alluded to by Dr. Edward Kolbs model of how the initial degrees of freedom 

declined from over 100 to something approaching what we see today in flat Euclidian 

space models of space time (i.e. the FRW metric used in standard cosmology) 
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APPENDIX IA: INITIAL STATEMENT OF KADOTAS POTENTIAL 
RECONSTRUCTION METHODOLOGY 
 

Kenji Kadota of FNAL in Pheno 2005 30 and also in arXIV 3  talked of comparing 

two graphs, one with a combination of scalar potential terms 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′′
⋅−⎟

⎠
⎞

⎜
⎝
⎛ ′
⋅

V
V

V
V 23

2

 against 

( )[ ]ξ  (Mpc) with a graph of  

)( jm  against mode numbers. Here, in this situation,  

=)( jm  linear combination of {  (1a)  })( jP

And when we set  = the demarcation of the end of time for the inflation, for a scale 

factor  a   leads to  

ENDt

( )∫ ′
′

−≡
ENDt

t ta
tdξ  (1b) 

In this situation, the {  refer to pixel data slices which show up in  })( jP
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⎣

⎡ ′′
⋅−⎟

⎠
⎞

⎜
⎝
⎛ ′
⋅ ∑ )  (2) 

We should identify the left hand side of equation 2 with the derivative of a function ( )ξG , 

i.e.  

( ) ( ξ
ξ

)ξ lni
i

i Bp
d

dG
⋅≡ ∑  (2a) 

This is when Kadota et al defined  

( )
⎩
⎨
⎧

=
0
1

lnξiB    with a value of 1 iff   1lnlnln +<< ii ξξξ  (3) 



In the most recent arXIV article, Kadota defined a procedure as to how to identify useful 

entries as to acceptable  values as to a simplified scalar potential structure which is  { )( jP }

( ) ( )( ) ( )[ ]2
00 10
φφνφφλφ −⋅−−⋅ ⋅+⋅⋅≡ eceVV    for a perturbation centered at 0φφ ≡   where this has 

1,1, >><< νλ c   , so then after Kadota defined  

ξλφ ln⋅≅  (4) 

so one could write  

00 lnξλφ ⋅≡  (5) 

He, Kadota, obtained graphical behavior as seen in his fig 8 and fig 9 of his arXIV 

article3.  An even simpler situation graphically emerged when Kadota set the left hand 

side of  Eq. (1a)  equal to a constant which permitted him, using Eq. ( 2 )and Eq.  (3 )above 

to give constant values to the  pixels, which was equivalent to his figure 7 which was for a 

potential system leading to a constant spectral index value, n when he defined via linking  n – 

1 to the derivative with respect to k  of an expression of the primordial power spectrum 

ip

( )kΡ  

via 

( )
dk

kdn Ρ
=−1  (6) 

Here, in this situation we have that if we interpret ( )1ϑ  as an order of magnitude constant 

of about 1 < ( )1ϑ  < 10. We should also note that often ( )1ϑ  is often set very close to 1 

itself.  

( ) HaHak ⋅≡⋅⋅= 1ϑ  (7) 

The exact particulars of  the power spectra ( )kΡ  are in Kadoka’s well written arXIV 

paper, but it suffices to say that the natural logarithm of the power spectra  is equal ( )kΡ



to an integral over ξ  values from zero to infinity, with part of the integrand involving a 

so called ‘window function’ times the power spectra ( )kΡ , for ( )kG  of equation 2.2a 

above. I do believe one can say the following: 

Kenji Kadoka’s methodology permits the general reconstruction of potentials as up to 

about 1000 years after the big bang. The issue at stake though is if or not re constructive 

methodology using some of these same methods could be countenanced going up to the 

end of the 60 e-folding period commonly viewed as the demarcation between flat and 

curved space, with a curved space milieu being the regime of active nucleation of our 

universe. This would entail, among other things, finding traces in CMB data of the initial 

signature of the big bang itself and tying it into a QCD style phase transition. 

 

APPENDIX I B: USING JDEM ANALYSIS OF DATA WITH THIS 
BUILT UP POTENTIAL SYSTEM, WITH KADOTAS POTENTIAL 
RECONSTRUCTION PROCEDURES 

The first step would be to refine the analytical algorithms to, give reliable data inputs 

into the right hand side 3,30  of ( ) ( ξ
ξ

)ξ lni
i

i Bp
d

dG
⋅≡ ∑ , where the left hand side of this 

equation actually could use, in a modified format the procedure given in Eq (3.2a) to 

Eq (3.2c) of the main text , and this done to obtain a match up of the acceptable   

entries with CMB data. 

ip

 

This would entail use of Monte Carlo simulations as well as far more developed analysis 

of how to obtain acceptable   entries in a more realistic manner than the toy problem ip



analyzed by Kadoka’s toy problem3,30 example which he presented in fig 7 of his arXIV 

article3. 

 Afterwards, once acceptable procedures are outlined as to finding acceptable   entries 

for potentials other than the potential given by Kadoka’s test scalar potential  given as  

ip

( ) ( )( ) ( )[ ]2
00 10
φφνφφλφ −⋅−−⋅ ⋅+⋅⋅≡ eceVV  (1)  

The potential reconstruction I believe could be greatly aided by some of the initial 

effective contributions of extra dimensionality and of side effects of the baryogenesis 

mentioned in the formation of our early universe potential nucleation model The idea 

would be to find ways to obtain data sets via techniques most congruent to reliable 

potential reconstruction of the early inflationary cosmos. Before the 1000 or so year limit 

specified by Kenji Kadota in discussions I had with him at Pheno 2005 30.  

 If finding acceptable match up of data sets with how to reconstruct a complicated 

potential beyond the one given by Eq (1) above was completed in general. Then one 

would face a discussion with manufacturers of the satellite used for dark matter searching 

as to tailor made electronics which would be acceptable for obtaining sufficient data sets.  

I am assuming that this investigation would be one out of many being used in the 

upcoming satellite mission. 

 

 



 

 

APPENDIX II: LINKS TO THE POTENTIAL SYSTEM USED FOR 
COSMOLOGICAL NUCLEATION 
 

( ) ( )
PPP ttttttt

decreaseincrease
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>>→⋅+≥→≤
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→→
+

δ
εφπφπφ 22

321

 (1) 

We described the potentials ,  and  in terms of S-S’ di quark pairs nucleating and 

then contributing to a chaotic inflationary scalar potential system. 
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APPENDIX III: INCLUDING IN NECESSARY AND SUFFICIENT 
CONDITIONS FOR FORMING A CONDENSATE STATE AT OR 
BEFORE PLANCK TIME   Pt

For a template for the initial expansion of a scalar field leading to false vacuum 

inflationary dynamics in the expansion of the universe, Zhitnitsky’s4 formulation for how 

to form a condensate of a stable soliton style configuration of cold dark matter is a useful 

starting point for how an axion field can initiate forming a so called QCD ball. 

Zhitnitsky4 uses quarks in a non-hadronic state of matter that, in the beginning, can be in 

di quark pairs. A di quark pair would permit making equivalence arguments to what is 

done with cooper pairs and a probabilistic representation as to find the relative ‘size’ of 



the cooper pair. We assume an analogous operation can be done with respect to di quark 

pairs. In doing so, calculations4 for quarks being are squeezed by a so called QCD phase 

transition due to the violent collapse of an axion domain wall. The axion domain wall 

would be the squeezer to obtain a so called S-S’ configuration. This presupposes a 

formation of a highly stable soliton type configuration in the onset due to the growth in 

baryon mass  

9/8BM B ≈  (1) 

This is due to a large baryon (quark) charge B  which Zhitnitsky4 finds is smaller than 

an equivalent mass of a collection of free separated nucleons with the same charge. This 

provides criteria for absolute stability by writing a region of stability for the QCD balls 

dependent upon the inequality occurring for  (a critical charge value) CBB >.

B
Mm B

N ∂
∂

>  (2) 

He19 furthermore states that stability, albeit not absolute stability is still guaranteed for 

the formation of meta stable states occurring with  

CBB <<<1  (3) 

If we make the assumptions that there is a balance between Fermi pressure  and a 

pressure due to surface tension, with 

fP

σ  being an axion wall tension value4 so that  

⎟
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⎞
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⎛ Ω
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⎛ ≅

V
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P f
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2  (4) 

This pre supposes that  is some sort of thermodynamic potential of a non interacting 

Fermi gas, so that one can then get a mean radius for a QCD ball at the moment of 

formation of the value, when assuming 

Ω

7.~ ≈c , and also setting  so that  3310+∝≈ CBB
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⎠

⎞
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⎝

⎛
⋅⋅

⋅
≅≡

σπ
BcRR  (5) 

If we wish to have this of the order of magnitude of a Planck length , then the axion 

domain wall tension must be huge, which is not unexpected. Still though, this pre 

supposes a minimum value of 

Pl

B  which Zhitnitsky4 set as

20exp 10~CB  (6) 

We need to keep in mind that Zhitnitsky4 set this parameterization up to account for a 

dark matter candidate. I am arguing that much of this same concept is useful for setting 

up an initial condensate of di quark pairs as, separately S-S’ in the initial phases of 

nucleation, with the further assumption that there is an analogy with the so called color 

super conducting phase (CS) which would permit di quark channels. The problem we are 

analyzing not only is equivalent to BCS theory electron pairs but can be linked to 

creating a region of nucleated space in the onset of inflation which has S-S’ pairs. The 

S-S’ pairs would have a distance between them proportional to distance mentioned 

earlier, , which would be greater than or equal to the minimum Planck’s distance value 

of . The moment one would expect to have deviations from the flat space geometry 

would closely coincide with Rocky Kolb’s model for when degrees of freedom would 

decrease from over 100 degrees of freedom to roughly ten or less during an abrupt QCD 

phase transition

0R

Pl

4. The QCD phase transition would be about the time one went from the 

first to the second potential systems mentioned above. 



 

APPENDIX IV A: WAVE FUNCTIONALS USED IN THIS MODEL 
AND THEIR ANALOGIES TO BLACK HOLE NUCLEATION 
 

This idea of pair creation arose once again in a later context in an article by Dias and 

Lemos   called ‘Pair creation of black holes on a cosmic string background’ where  the so 

called ‘amplitude’ for the propagation from ‘nothing’ to a three dimensional surface 

boundary Σ was given by the wave function 32( wave functional ): 

( ) [ ] [ ] ( )( )uuvuuviij AgIAdgdAh ,exp, −⋅⋅= ∫ψ                                                   (1) 

where  and  are the induced metric and electromagnetic potential on the boundary 

 of a compact manifold M , and 

ijh iA

M∂=Σ ( )uuv AgI ,  is the Euclidian action , with [ ]uvgd  

and  measures of the metric  and the Maxwell field  . Diaz and Lemos 

further state that a semi classical instanton approximation allows us to state that dominant 

contributions to the path integral come from metrics and Maxwell fields where are near 

the solutions which extremalize the Euclidian action and satisfy boundary conditions. So 

if we have this process, we may construct a wave function that that denotes the creation 

of a black hole via 

[ uAd ]

)

uvg uA

( instinst IB −⋅≡ expψ  (2) 

where B is a one loop contribution from quadratic fluctuations in the fields, , and 

 is the classical action of the gravitational instanton that mediates the pair creation of 

black holes. Similarly, the wave function which describes the nucleation of a dS de Sitter 

space from nothing is: 

I2δ

instI

)exp( dsdS I−∝ψ   (3) 



where  = dSI
Λ⋅
⋅

−
2
3 π  is the action of the  gravitational instanton which according to 

Lemos ‘mediates’ this nucleation.  So , then the nucleation probability of the dS  space 

from nothing and then the dS  space with a pair of black holes from nothing  is given by 

4S

2
dSψ  and 2

instψ  respectively. This then allows us to state then that if we take the ratio 

of these two probabilities that we obtain the pair creation rate of black holes in the dS 

background as  

)22exp( dSinst II +⋅−⋅≅Γ η  (4) 

For the Bogomol’nyi inequality approach6,7 we modify a de facto 1+1 dimensional 

problem in condensed matter physics to being one which is quasi one dimensional by 

making the following substitution, namely looking at the Lagrangian density ς  to having 

a time independent behavior denoted by a sudden pop up of a S-S’ pair via the 

substitution of the nucleation ‘pop up’ time by6,7

∫∫ ⋅⋅→⋅⋅ Ldxtdxd Pςτ
 (5) 

where  is the Planck’s time interval. Then afterwards, we shall use the substitution of 

 so we can write  

Pt

1≡≡ ch

( )∫⋅−⋅∝ dxLc βψ exp  (6) 
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PPENDIX IV B: REDUCING THE GIVEN WAVE FUNCTIONAL TO 
HAVING GAUSSIAN FUNCTIONAL BEHAVIOR  
We wish to give an argument as to how we obtain 6,7
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 (1) 

In both cases, we find that the coefficient in front of the wave functional in Eq.  (1) is 
normalized due to error function integration 
 
This is due to  
 
We also found that in order to have a Gaussian potential in our wavefunctionals that we 

needed to have in both interpretations 

{ }( ) ( ) ( TEFEgap VVE φφ −≡∆≡
2

) (2) 

where for the Bogomol’nyi interpretation of this problem we worked with potentials 

(generalization of the extended Sine-Gordon model potential) 6,7 
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We had a Lagrangian15 we modified to be (due to the Bogomil’nyi inequality) 

( ) {⋅−⋅+≥ 2
02

1
CE QL φφ }  (4) 

with topological charge 0→Q  and with the Gaussian coefficient found in such a 

manner as to leave us with wave functionals 1,3,10 we generalized for charge density 



transport .This same Eq.  (1) was more or less assumed in the Gaussian wavefunctional 

ansatz interpretation while 
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APPENDIX V: EXTRA DIMENSIONS AND THE BREAK DOWN OF 
THE SEMI - CLASSICAL APPROXIMATION.THIS IS AN 
ILLUSTRATION OF THIS CONCEPT, AND NOTHING MORE 

Here, I used equation 4.7 of the main text. For the first potential system, if we set 

xb=1, xa= - 1, and b = 10. (a sharp slope)  for the scalar field boundary we have. 

α
.373

1
:=

 (1) 

This assumes a Gaussian wave functional of  

ψ x( ) exp α− φ x( )⋅(:= )  (2) 

As well as a power parameter of 

ν 9:=  (3) 



Also, we are using, initially, a phase evolution parameter of  

φ x( ) π tanh b x xa−( )⋅[ ] tanh b xb x−( )⋅[−[⋅:= ] ]  (4) 

 
The first potential system is re scaled as 

V1 x( )
1
2

1 cos φ x( )( )−( )⋅
1

200
φ x( ) π−( )2⋅−:=

 (5) 

In addition, the following is used as a rescaling of the inner product 
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c3b
c2
c3

:=
 (9) 

Here,  

C3b = .999 (9a) 

For the 2nd potential system, if we assume a sharp slope, i.e. b1 = b = 10, and 

V2 x( )
1
2

φa x( )( )2

1 .000001 φa x( )( )3⋅+

⋅:=

 (10) 

 
If 



φa x( ) π tanh b1 x xa−( )⋅[ ] tanh b1 xb x−( )⋅[−[⋅:= ] ]  (11) 

and a modification of the ‘Gaussian width’ to be  

α1
.373
30

:=
 (12) 

We do specify a denominator, due to a normalization contribution we write as 
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3

3
⋅ x5

⋅

⌠⎮
⎮
⎮⌡

d

:=

 (13) 

 

c4

30−

30

xexp α1− φa x( )⋅( )( )2 π
3

3
⋅ x5

⋅ V2 x( )( )ν⋅ c1a⋅

⌠⎮
⎮
⎮⌡

d:=

 (14) 

In addition: 

c5

30−

30

xexp α− φa x( )⋅( )( )2 π
3

3
⋅ x5

⋅ V2 x( )⋅ c1a⋅

⌠⎮
⎮
⎮⌡

d

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

ν

:=

 (15) 

We then use a ratio of  
 
 

c5b
c4
c5

:=
 (16) 

 
Here, when one has the six dimensions, plus the thin wall approximation: 

C5b = 2.926E-3 (17) 

 
When one has three dimensions, plus the thin wall approximation 



c6

30−

30

xexp α1− φa x( )⋅( )( )2 π
1

.25
⋅ x2

⋅ V2 x( )( )ν⋅ c1b⋅

⌠⎮
⎮
⎮⌡

d:=

 (18) 

 

c7

30−

30

xexp α− φ x( )⋅( )( )2 π
1

.25
⋅ x2

⋅ V2 x( )⋅ c1b⋅

⌠⎮
⎮
⎮⌡

d

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

ν

:=

 (19) 

 

c7b
c6
c7

:=
. (20) 

This leads to  

c7b = .019 (21) 

When one has the thin wall approximation removed, via b1 = 1.5, one does not see a  

difference in the ratios obtained. 
 

For the 3rd potential system, which is intermediate between the 1st and 2nd potentials  

if the b1 = b = 10 value is used, one obtains for when we have six dimensions  

α1
.373

6
:=

 (22) 

As well as  

V2 x( )
1
2

φa x( )( )2

1 .5 φa x( )( )3⋅+

⋅:=

 (23) 

 
(When we have six dimensions) 
 
 

C5b = 0.024 (24) 

 
(When we have three dimensions) 
 



C7b = .016 (25) 

 
So, then one has C5b = .024, and C7b = .016 in the thin wall approximation 
 
When b1 = 3 (non thin wall approximation)  
 

C5b = .027 (26) 

(Six dimensions) 

 C7b = .02 (27) 

(Three dimensions) 
 
Summarizing, if  
 

V1 x( )
1
2

1 cos φ x( )( )−( )⋅
1

200
φ x( ) π−( )2⋅−:=

 = V1 (28) 

V2 x( )
1
2

φa x( )( )2

1 .000001 φa x( )( )3⋅+

⋅:=

                 = V3 (29) 

V2 x( )
1
2

φa x( )( )2

1 .5 φa x( )( )3⋅+

⋅:=

                            = V2 (30) 

 
One finally obtains the following results, as summarized below  
 
                                            b=b1 = 10                   b1 = 3                               b1 = 1 
V1 ( 6 dim)  C3b = .999       No data            No data  
V3 ( 6 dim) C5b = 2.926E-3          No data       C5b =   same value 
V3 ( 3 dim) C7b = .019        No data       C7b =   same value 
V2( 6 dim) C5b =  .027    C5b =  .024           No data 
V2 ( 3 dim) C7b =  .02    C7b =  .016           No data  
 
 
 



APPENDIX VI: DECAY RATES, AND COSMIC NUCLEATION, I.E. 
PRESENTING A NEW WAY TO OBTAIN INITIAL EVOLUTION 
OF THE  HUBBLE PARAMETER AND A RATE EQUATION 

Garriga 33, assuming a nearly flat De Sitter universe also came up with an expression 

for the number density of particles per unit length (time independent) 

( ES
H
E

eMn −⋅⋅+⋅
⋅

≈ exp
2

1
2

2
02

π
) (1) 

where for our purposes we would set  

1→≤ PMM  (2) 

 We prefer instead to use an estimation of a nucleation rate per Hubble volume per 

Hubble time29 

( ) ( )( ) 14
0 ≈≡∈

tH
t λ  (3) 

to show the  influence an evolving Hubble parameter would have , in early times, without 

the complexity of  predicting the   ( a Euclidian action integral) which would be in our 

example  a D+1 dimensional space knocked down to  being quasi 1 dimensional in 

‘character’ .  We assume, also, rescaling of Planckian length

ES

 to be unity where 

 .  1≡≡≡ Gch

This leads to, then  

APPENDIX VII: PREDICTING HOW A SCALE FACTOR EVOLVES 
IN THE BEGINNING OF INFLATIONARY COSMOLOGY 
 

I wish now to look at how the scale factor, , changes in time, in a manner we view 

which will enable us to delineate Hubble parameter variations in the first few moments 

after creation. In doing this, we can note the typical value

a

34 ( as given by Dodelson) 



( ) ( )( BBB ttHata −⋅≅ exp )

))

 (1) 

with   ,  and  being scale factor, Hubble parameter, and time values at the end of 

an inflationary period of expansion. Needless to say, in doing this, we are not obtaining 

values of what the scale factor and Hubble parameter could be at the onset of inflation, 

which is a situation we wish to remedy. So we set 

Ba BH Bt

(( BPBB ttHaa −≡ exp~
0  (2) 

and afterwards approximate the evolution of phase after time   via use of  Pt

⎟
⎠
⎞⎜

⎝
⎛ ⋅−≈⋅−⋅≅⋅

⋅⋅
−≡ ααφ

π
φφ tatat

G
m

i
00

0

~
1)

~
exp(~

12
~  (3) 

If we assume that  iφφ ~~
0 ≅  ,and that the time factors are small, we can state  

απ
0

~

12
a

G
m

≅
⋅⋅

 (4) 

as an order of magnitude estimate for the initial value of our scale factor at the beginning 

of inflation. So being the case, we move then to obtain a value for the initial evolution of 

the Hubble parameter via use of conformal time, with an Einstein equation 

( ) 02 22 =−⋅+⋅⋅⋅+ ∗φφφφ maHa &&&  (5a) 

where the conformal time we write as  

( ) Hta
t

⋅
−≅

1~  (5b) 

which may be re written using ordinary time as  

( ) 03 2 =−+⋅⋅+ ∗φφφφ mH &&&  (5c) 



which would lead to ( ) ( )( ) 14
0 ≈≡∈

tH
t λ   29  implying a nucleation rate evolution along 

the lines of 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅−⋅⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛⋅≅

∗−

)~~
exp(1

3

~~

3
1 0

0

2
0

1
0 t

amaa
H

αφ
φ

αα
 (6) 

implying  

( ) ( ttHtt PP ⋅+≈⋅+ δδλ 4
0 )  (7) 

which for small times just past the initial value of ttt P ⋅+≡ δ  leads to a nearly stable but 

increasing rate of the Hubble parameter right after a nucleation of a universe. This also 

leads to a phase change in behavior which I claim is motivated by the pre Planck time 

value of the Hubble parameter being set by (for times )Ptt ≤  

( ) ( )φπφπ VVGH ⋅
⋅

→⋅⋅
⋅

≡
3

8
3

82  (8) 

with the potential given by a washboard potential with a small driving potential 

proportional to  which blends into Guths chaotic inflationary model for times ( 2∗−φφ )

ttP ⋅+ δ .  
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