
CSE ������� � Algorithms

Instructor� Steven Skiena

O	ce� ���� Computer Science Building

Phone� ���������	��

Email� skiena
cs�sunysb�edu

O	ce Hours� �����	PM Tuesday�Thursday
 and by
appointment�

Course Time� ����	AM�����	PM Place� Studio A

ECC Building

Teaching Assistant� Daren Krebsbach

O	ce� ��	� Computer Science Building

Email� daren
sbcs�sunysb�edu

O	ce Hours� ��		����	PM Monday�Wednesday
 and
by appointment�

Textbook� Cormen
 Leiserson
 Rivest
 Introduction to
Algorithms
 McGraw�Hill
 ���	�

� Undergraduate Grading� Grades will be assigned
based on the following formula
 with cut�o�s de�
termined by my opinion of students on the bound�
ary�

Daily Problems � ��

Homework Assignment � ���

Midterm � � ���

Midterm � � ���

Final � �	�

� Graduate Student Grading� Grades will be as�
signed based on the following formula
 with cut�
o�s determined by my opinion of students on the
boundary�

Homeworks � �	�

Midterm � � ���

Midterm � � ���

Project � ���

Final � ���

� Homeworks� There will be �ve homeworks over
the course of the semester� The third assignment
will be a program� As discussed below
 all home�
works �except the third� can be done in pairs� On
each homework assignment
 only a subset of the
problems will be graded�

� Graduate Student Project� This is your oppor�
tunity to study some aspect of the design and anal�
ysis of algorithms in depth� Suitable projects will
be term papers
 implementations
 or original re�
search� A list of possible topics will be distributed
about two weeks into the semester
 although you
are encouraged to create your own� A brief pro�
posal of what you intend to do must be submitted
by mid�March� Each student will give a �ve min�
utes oral report on their project during the last
week of class�

Rules of the Games�

�� This semester CSE ��� will be part of EngiNet

meaning that all lectures will be videotaped� Any
EngiNet students should contact me by email or
phone as soon as possible so I am aware of your
existence� For local students
 these tapes provide
an opportunity to review lectures or enable you to
attend lectures at an alternate time� A regularly
scheduled screening of the previously lecture will
be held in room Javits �	�
 time TBA� The tapes
are also available for loan or viewing in the AV
room in Javits Hall�

�� Combining CSE ��� and CSE ��� has proven very
successful each time it has been taught� The
grad and undergrad courses will graded on sep�
arate curves
 and I will expect considerably more
from the graduate students
 in terms of the project
and better performance�

�� I will lecture from slides
 which are now more or
less available on�line� I will also make copies of
my slides available in the CS library after lecture�
If there is su�cient demand
 we may also make
them available through BASIX or a print shop o�
campus�

�� The WWW page for the course is�

http���www�cs�sunysb�edu�� skiena�����cse����html

All course handouts and notes are available there

along with the latest announcements� Please check
it out�

�� The best way to learn the material is by solving
problems� You are encouraged to work in pairs

for the best way to understand the subtleties of
the homework problems is to argue about the an�
swers� Each of you should look at all the problems
independently
 and not just divide the list in two
parts each time� Don�t be a leech and let your
partner do all the work� Unless you learn how to
solve problems
 I promise that you will get burned
on the exams and thus for your �nal grade�

�� The partner system relies upon a certain maturity
among the students� If you don�t have a partner

tell me and I will hook you up with one� If you
are having trouble with your partner and want a
divorce
 tell me and I will set you up with a new
one� I will act as a broker but not as a counselor� I

do not want to hear what a louse your old partner
is
 and you will get a dirty look from me when you
demand a divorce regradless of who was at fault�

�� At the start of each class
 I will work out one pre�
viously identi�ed homework problem
 emphasizing
the thought process leading to the solution� To
get the most bene�t from this
 you should try to
work out the problem before lecture
 I will collect
your solutions for these daily problems at the be�
ginning of each class�

�� Only one solution to the assignment per pair should
be turned in
 with the partners alternating who
writes up the �nal solution� The scribe for each
assignment will have to label themselves as such�
Unless announced otherwise in class
 any solution
to a part of a homework problem which takes
more than one side of a sheet of paper will not
be graded� This is to save you the ordeal of trying
to impress with volume instead of quality�

�� Because a primary goal of the course is to teach
professionalism
 any academic dishonesty will be
viewed as evidence that this goal has not been
achieved
 and will be grounded for receiving a grade
of F� �See CEAS Procedures and Guideline Gov�
erning Academic Dishonesty
 ������

�	� If you have any condition
 such as a physical or
mental disability
 which will make it di�cult for

you to carry out the work as I have outlined it or
which requires extra time on examinations
 please
notify me in the �rst two weeks of the course so
that we may make appropriate arrangements�

��� I understand that everyone gets into a time bind
now and then
 and that accidents and troubles be�
fall even the most dedicated student� Thus every
student will get one free extension on a home�
work for up to a week without a late penalty� You
do not have to ask for this � just write that you
are using your free extension when you turn it in�
Don�t waste this extension or feel obligated to use
it
 since you will get a very dirty look if try to get
another one even with a good excuse�

��� Homework assignments will be due at the begin�
ning of class� The penalty will be �	� per day�

��� I hope to establish as much personal contact with
each of you as is possible in a class this size� Don�t
be afraid to stop by during o�ce hours to ask
questions or say hello� To facilitate interaction

every few weeks there will be �Pizza with the Prof��
Outside my o�ce will be a sheet for you to sign�
up to join ���	 other students from the class for
a pizza lunch �on me�� I look forward to getting
to know you�

Tentative Schedule

subject topics reading
Preliminaries Analyzing algorithms ����
� Asymptotic notation �����
� Recurrence relations ����	
Sorting Heapsort �	
���

� Quicksort �������
� Linear Sorting �������
Searching Data structures �

����
� Binary search trees �		��	�
� Red�Black trees�insertion �������

 Red�Black trees�deletion �������
� Splay Trees�Amortized Analysis
MIDTERM �
Comb� Search Backtracking
� Elements of dynamic programming �
����	
� Examples of dynamic programming ��	����
Graph Algorithms Data structures 	���	��

for graphs
� Breadth�depth��rst search 	���	��
� Topological Sort�Connectivity 	���	��
� Minimum Spanning Trees 	�����

� Single�source shortest paths ��	����
� All�pairs shortest paths ��
����
MIDTERM �
Intractability P and NP �������
� NP�completeness �������
� NP�completeness proofs �������
� Further reductions ������

� Approximiation algorithms ��	���	
� Set cover � knapsack heuristics ��	����
Semester Review HW� IN
Graduate Student talks
Presentations
FINAL EXAM

What Is An Algorithm�

Algorithms are the ideas behind computer programs�

An algorithm is the thing which stays the same whether
the program is in Pascal running on a Cray in New York
or is in BASIC running on a Macintosh in Kathmandu�

To be interesting
 an algorithm has to solve a general

speci�ed problem� An algorithmic problem is speci�ed
by describing the set of instances it must work on and
what desired properties the output must have�

Example� Sorting

Input� A sequence of N numbers a����an

Output� the permutation �reordering� of the input se�
quence such as a� � a� � � � � an�

We seek algorithms which are correct and e�cient�

Correctness

For any algorithm
 we must prove that it always returns
the desired output for all legal instances of the problem�

For sorting
 this means even if ��� the input is already
sorted
 or ��� it contains repeated elements�

Correctness is Not Obvious�

The following problem arises often in manufacturing
and transportation testing applications�

Suppose you have a robot arm equipped with a tool

say a soldering iron� To enable the robot arm to do
a soldering job
 we must construct an ordering of the
contact points
 so the robot visits �and solders� the
�rst contact point
 then visits the second point
 third

and so forth until the job is done�

Since robots are expensive
 we need to �nd the order
which minimizes the time �ie� travel distance� it takes
to assemble the circuit board�

You are given the job to program the robot arm� Give
me an algorithm to �nd the best tour�

Nearest Neighbor Tour

A very popular solution starts at some point p
 and
then walks to its nearest neighbor p� �rst
 then repeats
from p�
 etc� until done�

Pick and visit an initial point p

p� p

i� 	
While there are still unvisited points

i� i��
Let pi be the closest unvisited point to pi��
Visit pi

Return to p
 from pi

This algorithm is simple to understand and implement
and very e�cient� However
 it is not correct

-1 0 1 3 11-21 -5

-1 0 1 3 11-21 -5

Always starting from the leftmost point or any other
point will not �x the problem�

Closest Pair Tour

Always walking to the closest point is too restrictive

since that point might trap us into making moves we
don�t want�

Another idea would be to repeatedly connect the clos�
est pair of points whose connection will not cause a
cycle or a three�way branch to be formed
 until we
have a single chain with all the points in it�

Let n be the number of points in the set
d��
For i � � to n� � do

For each pair of endpoints �x� y� of partial paths
If dist�x� y� � d then

xm � x
 ym � y
 d� dist�x� y�
Connect �xm� ym� by an edge

Connect the two endpoints by an edge�

Although it works correctly on the previous example

other data causes trouble�

This algorithm is not correct�

A Correct Algorithm

We could try all possible orderings of the points
 then
select the ordering which minimizes the total length�

d��
For each of the n� permutations �i of the n points

If �cost��i� � d� then
d� cost��i� and Pmin � �i

Return Pmin

Since all possible orderings are considered
 we are guar�
anteed to end up with the shortest possible tour�

Because it trys all n� permutations
 it is extremely slow

much too slow to use when there are more than �	��	
points�

No e�cient
 correct algorithm exists for the traveling
salesman problem
 as we will see later�

E�ciency

�Why not just use a supercomputer��

Supercomputers are for people too rich and too stupid
to design e�cient algorithms�

A faster algorithm running on a slower computer will
always win for su�ciently large instances
 as we shall
see�

Usually
 problems don�t have to get that large before
the faster algorithm wins�

Expressing Algorithms

We need some way to express the sequence of steps
comprising an algorithm�

In order of increasing precision
 we have English
 pseu�
docode
 and real programming languages� Unfortu�
nately
 ease of expression moves in the reverse order�

I prefer to describe the ideas of an algorithm in English

moving to pseudocode to clarify su�ciently tricky de�
tails of the algorithm�

The RAM Model

Algorithms are the only important
 durable
 and origi�
nal part of computer science because they can be stud�
ied in a machine and language independent way�

The reason is that we will do all our design and analysis
for the RAM model of computation�

� Each �simple� operation ��
 �
 �
 if
 call� takes
exactly � step�

� Loops and subroutine calls are not simple opera�
tions
 but depend upon the size of the data and
the contents of a subroutine� We do not want
�sort� to be a single step operation�

� Each memory access takes exactly � step�

We measure the run time of an algorithm by counting
the number of steps�

This model is useful and accurate in the same sense as
the at�earth model �which is useful��

Best� Worst� and Average�Case

The worst case complexity of the algorithm is the func�
tion de�ned by the maximum number of steps taken
on any instance of size n�

1 2 3 4 N

of

Steps Worst Case

Complexity

Average Case

Complexity

Best Case
Complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The best case complexity of the algorithm is the func�
tion de�ned by the minimum number of steps taken on
any instance of size n�

The average�case complexity of the algorithm is the
function de�ned by an average number of steps taken
on any instance of size n�

Each of these complexities de�nes a numerical function
� time vs� size�

Insertion Sort

One way to sort an array of n elements is to start with
an empty list
 then successively insert new elements in
the proper position�

a� � a� � � � � � ak j ak�� � � � an

At each stage
 the inserted element leaves a sorted
list
 and after n insertions contains exactly the right
elements� Thus the algorithm must be correct�

But how e�cient is it!

Note that the run time changes with the permutation
instance� �even for a �xed size problem�

How does insertion sort do on sorted permutations!

How about unsorted permutations!

Exact Analysis of Insertion Sort

Count the number of times each line of pseudocode
will be executed�

Line InsertionSort�A� "Inst� "Exec�
� for j��� to len� of A do c� n
� key��A#j$ c� n��
� �% put A#j$ into A#���j��$ %� c��	 �
� i��j�� c� n��
� while i � 	&A#�$ � key do c� tj
� A#i��$�� A#i$ c�
� i �� i�� c�
� A#i��$��key c� n��

The for statement is executed �n����� times �why!�

Within the for statement
 �key��A#j$� is executed n��
times�

Steps �
 �
 � are harder to count�

Let tj � �� the number of elements that have to be
slide right to insert the jth item�

Step � is executed t�� t�� ���� tn times�

Step � is t���� t���� ���� tn���

Add up the executed instructions for all pseudocode
lines to get the run�time of the algorithm�

c��n�c��n����c	�n���� c�
Pn

j�� tj� c�
Pn

j���tj���

�c�
Pn

j���tj � �� � c�

What are the t�js! They depend on the particular input�

Best Case

If it�s already sorted
 all tj�s are ��

Hence
 the best case time is

c�n� �c�� c	� c�� c���n � �� � Cn�D

where C and D are constants�

Worst Case

If the input is sorted in descending order
 we will have
to slide all of the already�sorted elements
 so tj � j

and step � is executed

nX

j��

j � �n�� n���� �

Exact Analysis is Hard�

We have agreed that the best
 worst
 and average case
complexity of an algorithm is a numerical function of
the size of the instances�

1 2 3 4

However
 it is di�cult to work with exactly because it
is typically very complicated�

Thus it is usually cleaner and easier to talk about upper
and lower bounds of the function�

This is where the dreaded big O notation comes in�

Since running our algorithm on a machine which is
twice as fast will e�ect the running times by a multi�
plicative constant of � � we are going to have to ignore
constant factors anyway�

Names of Bounding Functions

Now that we have clearly de�ned the complexity func�
tions we are talking about

� g�n� � O�f�n�� means C� f�n� is an upper bound
on g�n��

� g�n� � '�f�n�� means C � f�n� is a lower bound
on g�n��

� g�n� � (�f�n�� means C��f�n� is an upper bound
on g�n� and C� � f�n� is a lower bound on g�n��

Got it!

All of these de�nitions imply a constant n
 beyond
which they are satis�ed� We do not care about small
values of n�

O� �� and �

(a) (b) (c)

c2g(n)

f(n)

c1g(n)

cg(n)

f(n)

f(n) = O(g(n))

f(n)

cg(n)

nn n
n0 n0 n0

The value of n
 shown is the minimum possible value)
any greater value would also work�

�a� f�n� � (�g�n�� if there exist positive constants n

c�
 and c� such that to the right of n

 the value of
f�n� always lies between c� �g�n� and c� �g�n� inclusive�

�b� f�n� � O�g�n�� if there are positive constants n

and c such that to the right of n

 the value of f�n�
always lies on or below c � g�n��

�c� f�n� � '�g�n�� if there are positive constants n

and c such that to the right of n

 the value of f�n�
always lies on or above c � g�n��

Asymptotic notation �O�(�'� are as well as we can
practically deal with complexity functions�

What does all this mean�

�n� � �		n�� � O�n�� because �n� � �n� � �		n��

�n� � �		n�� � O�n�� because �	�n� � �n� � �		n� �

�n� � �		n�� �� O�n� because c � n � �n� when n � c

�n� � �		n�� � '�n�� because ����n� � �n� � �		n��

�n� � �		n�� �� '�n�� because �n� � �		n�� � n�

�n� � �		n�� � '�n� because �	�

�

n � �n� � �		� �

�n� � �		n�� � (�n�� because O and '

�n� � �		n�� �� (�n�� because O only

�n� � �		n�� �� (�n� because ' only

Think of the equality as meaning in the set of functions�

Note that time complexity is every bit as well de�ned
a function as sin�x� or you bank account as a function
of time�

Testing Dominance

f�n� dominates g�n� if limn�� g�n��f�n� � 	
 which is
the same as saying g�n� � o�f�n���

Note the little�oh � it means �grows strictly slower
than��

Knowing the dominance relation between common func�
tions is important because we want algorithms whose
time complexity is as low as possible in the hierarchy�
If f�n� dominates g�n�
 f is much larger �ie� slower�
than g�

� na dominates nb if a � b since

lim
n��

nb�na � nb�a 	 	

� na � o�na� doesn�t dominate na since

lim
n��

nb��na � o�na�	 �

Complexity �
 �
 �
 	

n
�

� sec
�

� sec
�

� sec
�

	 sec

n�
�

� sec
�

	 sec
�

� sec
�
�� sec

n�
�

� sec
�

� sec
�
�� sec
�
�	 sec

n�
�� sec ��� sec �	�� sec ��� min
�n
�

� sec ��
 sec ���� min ���� days

�n
��� sec �� min ��� years ���� cent

Working with the Notation

Suppose f�n� � O�n�� and g�n� � O�n���

What do we know about g��n� � f�n� � g�n�! Adding
the bounding constants shows g��n� � O�n���

What do we know about g���n� � f�n��g�n�! Since the
bounding constants don�t necessary cancel
 g���n� �
O�n��

We know nothing about the lower bounds on g� � g��

because we know nothing about lower bounds on f
 g�

Suppose f�n� � '�n�� and g�n� � '�n���

What do we know about g��n� � f�n� � g�n�! Adding
the lower bounding constants shows g��n� � '�n���

What do we know about g���n� � f�n� � g�n�! We
know nothing about the lower bound of this�

Problem �����	

a� Is �n� � � O��n�!

b� Is ��n � O��n�!

�a� Is �n� � � O��n�!

Is �n�� � c � �n!

Yes
 if c
 � for all n

�b� Is ��n � O��n�!

Is ��n � c � �n!

note ��n � �n � �n

Is �n � �n � c � �n!

Is �n � c!

No� Certainly for any constant c we can �nd an n such
that this is not true�

