CSE 373/548 — Algorithms
Instructor: Steven Skiena
Office: 1411 Computer Science Building
Phone: 516-632-9026
Email: skiena®@cs.sunysb.edu
Office Hours: 1-2:30PM Tuesday-Thursday, and by

appointment.

Course Time: 11:30AM-12:50PM Place: Studio A,
ECC Building

Teaching Assistant: Daren Krebsbach

Office: 1307 Computer Science Building

Email: daren®@sbcs.sunysb.edu

Office Hours: 3:00-4:30PM Monday-Wednesday, and
by appointment.

Textbook: Cormen, Leiserson, Rivest, Introduction to
Algorithms, McGraw-Hill, 1990.

¢ Undergraduate Grading: Grades will be assigned
based on the following formula, with cut-offs de-
termined by my opinion of students on the bound-
ary.

Daily Problems - 5%
Homework Assignment - 15%
Midterm 1 - 25%

Midterm 2 - 25%

Final - 30%

e Graduate Student Grading: Grades will be as-
sighed based on the following formula, with cut-
offs determined by my opinion of students on the
boundary.

Homeworks - 20%
Midterm 1 - 15%
Midterm 2 - 15%
Project - 25%
Final - 25%

¢ Homeworks: There will be five homeworks over
the course of the semester. The third assignment
will be a program. As discussed below, all home-
works (except the third) can be done in pairs. On
each homework assignment, only a subset of the
problems will be graded.

e Graduate Student Project: This is your oppor-
tunity to study some aspect of the design and anal-
ysis of algorithms in depth. Suitable projects will
be term papers, implementations, or original re-
search. A list of possible topics will be distributed
about two weeks into the semester, although you
are encouraged to create your own. A brief pro-
posal of what you intend to do must be submitted
by mid-March. Each student will give a five min-
utes oral report on their project during the last
week of class.

Rules of the Games:

1. This semester CSE 548 will be part of EngiNet,
meaning that all lectures will be videotaped. Any
EngiNet students should contact me by email or
phone as soon as possible so I am aware of your
existence. For local students, these tapes provide
an opportunity to review lectures or enable you to
attend lectures at an alternate time. A regularly
scheduled screening of the previously lecture will
be held in room Javits 108, time TBA. The tapes
are also available for loan or viewing in the AV
room in Javits Hall.

2. Combining CSE 373 and CSE 523 has proven very
successful each time it has been taught. The
grad and undergrad courses will graded on sep-
arate curves, and I will expect considerably more
from the graduate students, in terms of the project
and better performance.

3. I will lecture from slides, which are now more or
less available on-line. I will also make copies of
my slides available in the CS library after lecture.
If there is sufficient demand, we may also make
them available through BASIX or a print shop off
campus.

4. The WWW page for the course is:
http://www.cs.sunysb.edu/™ skiena/548/cse548.html

All course handouts and notes are available there,
along with the latest announcements. Please check
it out.

5. The best way to learn the material is by solving
problems. You are encouraged to work in pairs,
for the best way to understand the subtleties of
the homework problems is to argue about the an-
swers. Each of you should look at all the problems
independently, and not just divide the list in two
parts each time. Don’'t be a leech and let your
partner do all the work. Unless you learn how to
solve problems, I promise that you will get burned
on the exams and thus for your final grade.

6. The partner system relies upon a certain maturity
among the students. If you don’t have a partner,
tell me and I will hook you up with one. If you
are having trouble with your partner and want a
divorce, tell me and I will set you up with a new
one. I will act as a broker but not as a counselor. 1

10.

do not want to hear what a louse your old partner
is, and you will get a dirty look from me when you
demand a divorce regradless of who was at fault.

. At the start of each class, I will work out one pre-

viously identified homework problem, emphasizing
the thought process leading to the solution. To
get the most benefit from this, you should try to
work out the problem before lecture, I will collect
your solutions for these daily problems at the be-
ginning of each class.

Only one solution to the assignment per pair should
be turned in, with the partners alternating who
writes up the final solution. The scribe for each
assignment will have to label themselves as such.
Unless announced otherwise in class, any solution
to a part of a homework problem which takes
more than one side of a sheet of paper will not
be graded. This is to save you the ordeal of trying
to impress with volume instead of quality.

. Because a primary goal of the course is to teach

professionalism, any academic dishonesty will be
viewed as evidence that this goal has not been
achieved, and will be grounded for receiving a grade
of F. (See CEAS Procedures and Guideline Gov-
erning Academic Dishonesty, 1/81.)

If you have any condition, such as a physical or
mental disability, which will make it difficult for

11.

12.

13.

you to carry out the work as I have outlined it or
which requires extra time on examinations, please
notify me in the first two weeks of the course so
that we may make appropriate arrangements.

I understand that everyone gets into a time bind
now and then, and that accidents and troubles be-
fall even the most dedicated student. Thus every
student will get one free extension on a home-
work for up to a week without a late penalty. You
do not have to ask for this — just write that you
are using your free extension when you turn it in.
Don’'t waste this extension or feel obligated to use
it, since you will get a very dirty look if try to get
another one even with a good excuse.

Homework assignments will be due at the begin-
ning of class. The penalty will be 20% per day.

I hope to establish as much personal contact with
each of you as is possible in a class this size. Don’'t
be afraid to stop by during office hours to ask
questions or say hello. To facilitate interaction,
every few weeks there will be 'Pizza with the Prof’.
Outside my office will be a sheet for you to sign-
up to join 5-10 other students from the class for
a pizza lunch (on me). I look forward to getting
to know you.

Tentative Schedule

subject topics reading
Preliminaries Analyzing algorithms 1-32
” Asymptotic notation 32-37
” Recurrence relations 53-64
Sorting Heapsort 140-150
” Quicksort 153-167
" Linear Sorting 172-182
Searching Data structures 200-215
" Binary search trees 244-245
” Red-Black trees:insertion 262-272
“ Red-Black trees:deletion 272-277
” Splay Trees/Amortized Analysis
MIDTERM 1
Comb. Search Backtracking
” Elements of dynamic programming | 301-314
” Examples of dynamic programming | 314-323
Graph Algorithms | Data structures 465-477
for graphs
” Breadth/depth-first search 477-483
” Topological Sort/Connectivity 485-493
” Minimum Spanning Trees 498-510
" Single-source shortest paths 514-532
” All-pairs shortest paths 550-563
MIDTERM 2
Intractability P and NP 916-928
" NP-completeness 929-939
" NP-completeness proofs 939-951
" Further reductions 951-960
” Approximiation algorithms 964-974
” Set cover / knapsack heuristics 974-983
Semester Review HWES IN
Graduate Student talks

Presentations

FINAL EXAM

What Is An Algorithm?

Algorithms are the ideas behind computer programs.

An algorithm is the thing which stays the same whether
the program is in Pascal running on a Cray in New York
or is in BASIC running on a Macintosh in Kathmandu!

To be interesting, an algorithm has to solve a general,
specified problem. An algorithmic problem is specified
by describing the set of instances it must work on and
what desired properties the output must have.

Example: Sorting

Input: A sequence of N numbers aq...an

Output: the permutation (reordering) of the input se-
quence such as a1 <as... < ay.

We seek algorithms which are correct and efficient.

Correctness

For any algorithm, we must prove that it always returns
the desired output for all legal instances of the problem.

For sorting, this means even if (1) the input is already
sorted, or (2) it contains repeated elements.

Correctness is Not Obvious!

The following problem arises often in manufacturing
and transportation testing applications.

Suppose you have a robot arm equipped with a tool,
say a soldering iron. To enable the robot arm to do
a soldering job, we must construct an ordering of the
contact points, so the robot visits (and solders) the
first contact point, then visits the second point, third,
and so forth until the job is done.

Since robots are expensive, we need to find the order
which minimizes the time (ie. travel distance) it takes
to assemble the circuit board.

You are given the job to program the robot arm. Give
me an algorithm to find the best tour!

Nearest Neighbor Tour

A very popular solution starts at some point pg and
then walks to its nearest neighbor pq first, then repeats
from pq, etc. until done.

Pick and visit an initial point pg

P —DPo

1 =20

While there are still unvisited points
=1+ 1
Let p; be the closest unvisited point to p;_1
Visit P;

Return to pg from p;

This algorithm is simple to understand and implement
and very efficient. However, it is not correct!

21 -5 1 0 1 3 1

Always starting from the leftmost point or any other
point will not fix the problem.

Closest Pair Tour

Always walking to the closest point is too restrictive,
since that point might trap us into making moves we
don’t want.

Another idea would be to repeatedly connect the clos-
est pair of points whose connection will not cause a
cycle or a three-way branch to be formed, until we
have a single chain with all the points in it.

Let n be the number of points in the set
d = oo
For:=1ton—-—1do
For each pair of endpoints (z,y) of partial paths
If dist(xz,y) < d then
Tm = T, Ym = Y, d = dist(z,y)
Connect (zm,ym) by an edge
Connect the two endpoints by an edge.

Although it works correctly on the previous example,
other data causes trouble:

i

T his algorithm is not correct!

A Correct Algorithm

We could try all possible orderings of the points, then
select the ordering which minimizes the total length:

d = oo
For each of the n! permutations IN; of the n points
If (cost(M;) < d) then
d = cost(IN;) and P,,;, = MN;
Return P,,;,

Since all possible orderings are considered, we are guar-
anteed to end up with the shortest possible tour.

Because it trys all n! permutations, it is extremely slow,
much too slow to use when there are more than 10-20
points.

No efficient, correct algorithm exists for the traveling
salesman problem, as we will see later.

Efficiency

"Why not just use a supercomputer?”

Supercomputers are for people too rich and too stupid
to design efficient algorithms!

A faster algorithm running on a slower computer will
always win for sufficiently large instances, as we shall
see.

Usually, problems don’t have to get that large before
the faster algorithm wins.

Expressing Algorithms

We need some way to express the sequence of steps
comprising an algorithm.

In order of increasing precision, we have English, pseu-
docode, and real programming languages. Unfortu-
nately, ease of expression moves in the reverse order.

I prefer to describe the ideas of an algorithm in English,
moving to pseudocode to clarify sufficiently tricky de-
tails of the algorithm.

The RAM Model

Algorithms are the only important, durable, and origi-
nal part of computer science because they can be stud-
ied in a machine and language independent way.

The reason is that we will do all our design and analysis
for the RAM model of computation:

e Each "simple” operation (4, -, =, if, call) takes
exactly 1 step.

e Loops and subroutine calls are not simple opera-
tions, but depend upon the size of the data and
the contents of a subroutine. We do not want
“sort” to be a single step operation.

e Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting
the number of steps.

This model is useful and accurate in the same sense as
the flat-earth model (which is useful)!

Best, Worst, and Average-Case

T he worst case complexity of the algorithm is the func-
tion defined by the maximum number of steps taken
on any instance of size n.

#of
Steps Worst Case

Complexity

Average Case
Complexity

Best Case
Complexity

The best case complexity of the algorithm is the func-
tion defined by the minimum number of steps taken on
any instance of size n.

The average-case complexity of the algorithm is the
function defined by an average number of steps taken
on any instance of size n.

Each of these complexities defines a numerical function
— time vs. size!

Insertion Sort

One way to sort an array of n elements is to start with
an, empty list, then successively insert new elements in
the proper position:

a1 <apx<...<ag | agyq...an

At each stage, the inserted element leaves a sorted
list, and after n insertions contains exactly the right
elements. Thus the algorithm must be correct.

But how efficient is it?

Note that the run time changes with the permutation
instance! (even for a fixed size problem)

How does insertion sort do on sorted permutations?

How about unsorted permutations?

Exact Analysis of Insertion Sort

Count the number of times each line of pseudocode
will be executed.

Line | InsertionSort(A) #Inst. | #Exec.
1 for j:=2 to len. of A do cl n
2 key:=A[j] c2 n-1
3 /* put A[j] into A[1..j-1] */ | c3=0 /
4 ir=j-1 c4 n-1
5 while i > 0& A[1] > key do c5 tj
6 Ali+1]:= A[i] c6

7 = i-1 c7

8 Ali+1]:=key c8 n-1

The for statement is executed (n—1)+1 times (why?)

Within the for statement, "key:=A[j]” is executed n-1
times.

Steps 5, 6, 7 are harder to count.

Let t; = 14+ the number of elements that have to be
slide right to insert the jth item.

Step 5 is executed t5 4 t3 + ... + £, times.

Step 6isto_1 +tz_ 1+ ...+ t,_1.

Add up the executed instructions for all pseudocode
lines to get the run-time of the algorithm:

c1*n+cx(n—1)+cg(n—1)+ cs 2?22 ti+ ce 2?22(15]-—1)
ez i=a(tj —1) +cs

What are the t;-s? They depend on the particular input.

Best Case

If it's already sorted, all t]-’s are 1.

Hence, the best case time is

cin+ (co+ca+cg+cg)(n—1)=Cn—+ D

where C and D are constants.

Worst Case

If the input is sorted in descending order, we will have
to slide all of the already-sorted elements, so tj = 7,
and step 5 is executed

i=m+n)/2-1
2

n

J

Exact Analysis is Hard!

We have agreed that the best, worst, and average case
complexity of an algorithm is a numerical function of
the size of the instances.

However, it is difficult to work with exactly because it
is typically very complicated!

Thus it is usually cleaner and easier to talk about upper
and lower bounds of the function.

This is where the dreaded big O notation comes in!

Since running our algorithm on a machine which is
twice as fast will effect the running times by a multi-
plicative constant of 2 - we are going to have to ignore
constant factors anyway.

Names of Bounding Functions

Now that we have clearly defined the complexity func-
tions we are talking about

e g(n) = O(f(n)) means C x f(n) is an upper bound
on g(n).

e g(n) = Q2(f(n)) means C x f(n) is a lower bound
on g(n).

e g(n) = O(f(n)) means Cy x f(n) is an upper bound
on g(n) and C5 x f(n) is a lower bound on g(n).

Got it?

All of these definitions imply a constant ng beyond
which they are satisfied. We do not care about small
values of n.

c2g(n)

f(n)

clg(n)

f(n) = O(g(n)

@ (b) ©

The value of ng shown is the minimum possible value;
any greater value would also work.

(a) f(n) = ©(g(n)) if there exist positive constants ng,
c1, and ¢, such that to the right of ng, the value of
f(n) always lies between cq-g(n) and c5-g(n) inclusive.

(b) f(n) = O(g(n)) if there are positive constants ng
and c such that to the right of ng, the value of f(n)
always lies on or below c- g(n).

(c) f(n) = Q2(g(n)) if there are positive constants ng
and c such that to the right of ng, the value of f(n)
always lies on or above c- g(n).

Asymptotic notation (0O,©,Q) are as well as we can
practically deal with complexity functions.

What does all this mean?

3n2 — 100n + 6 O(n?) because 3n® > 3n2 — 100n + 6
3n2 — 100n + 6 O(n>) because .01n> > 3n? — 100n + 6
3n° —100n+6 # O(n) because c-n < 3n° when n > c

Q(n?) because 2.99n° < 3n% — 100n + 6
Q(n3) because 3n? — 100n + 6 < n>

10
Q(n) because 1019 "n < 3n? — 100+ 6

3n2 —100n 4+ 6
3n2 —100n+ 6

3n2 —100n+ 6

H

3n2 —100n+6 = ©(n?) because O and
3n° —100n+6 #= O(n3) because O only
+

3n2 — 100n + 6 ©(n) because Q2 only

Think of the equality as meaning in the set of functions.

Note that time complexity is every bit as well defined
a function as sin(z) or you bank account as a function
of time.

Testing Dominance

f(n) dominates g(n) if limp—o g(n)/f(n) = 0, which is
the same as saying g(n) = o(f(n)).

Note the little-oh — it means “grows strictly slower

than”.

Knowing the dominance relation between common func-
tions is important because we want algorithms whose
time complexity is as low as possible in the hierarchy.
If f(n) dominates g(n), f is much larger (ie. slower)

than g.

e n% dominates n? if a > b since

lim n’/n® =n

n—oo

b—a

— 0

e n% 4+ o(n%) doesn’'t dominate n® since

lim nb/(na +o(n?*) — 1

n—oo

Complexity 10 20 30 40

n 0.00001 sec | 0.00002 sec | 0.00003 sec | 0.00004 sec
n2 0.0001 sec 0.0004 sec 0.0009 sec 0.016 sec
n3 0.001 sec 0.008 sec 0.027 sec 0.064 sec
n® 0.1 sec 3.2 sec 24.3 sec 1.7 min

2n 0.001 sec 1.0 sec 17.9 min 12.7 days
3n 0.59 sec 58 min 6.5 years 3855 cent

Working with the Notation

Suppose f(n) = O0(n?) and g(n) = O(n?).

What do we know about ¢'(n) = f(n) + g(n)? Adding
the bounding constants shows ¢'(n) = O(n?).

What do we know about ¢""(n) = f(n)—g(n)? Since the
bounding constants don’t necessary cancel, ¢"(n) =

0(n?)

We know nothing about the lower bounds on ¢’ + ¢
because we know nothing about lower bounds on f, g.

Suppose f(n) = Q2(n?) and g(n) = Q(n?).

What do we know about ¢'(n) = f(n) + g(n)? Adding
the lower bounding constants shows ¢'(n) = Q(n?2).

What do we know about g¢"'(n) = f(n) — g(n)? We
know nothing about the lower bound of this!

Problem 2.1-4:
(a) Is2n+ 1 = 0(2n)7?

(b) Is 227 = O(2™)7

(a) Is2n+ 1 =0(2n)7?
Is2n4 1< c*x2n?
Yes, if ¢ > 2 for all n
(b) Is 22" = O(2™)?
Is 22" < c% 2n?
note 22" = 2n % 2n
Is 2n x2n < c* 2n7?
Is 2n < c7

No! Certainly for any constant ¢ we can find an n such
that this is not true.

