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Abstract: This paper presents a partial differential equation that determines Put option prices using both analytic 
formula and Crank-Nicolson numerical solutions for different stock prices. The deviation values were derived from 
Black-Scholes analytical solutions, placing certain criteria using three standard statistical tools as a measure for 
pricing effects. Results obtained revealed when options are overpriced, underpriced as well as no-mispricing which 
is in line with hypothetical predictions and important improvement over earlier efforts. In the same setting, 
Kolmogorov-Smirnov (KS) was used to verify the distributions of Black-Scholes (BS) and Crank-Nicolson (CN). In 
addition, the initial stock prices of no-mispricing were compared with others and results obtained indicated that 
initial stock price of forty (40) were the most significant and excellent stock price for Put options. This paper 
presented here has deep connotation for future studies of Put options. Consequently, our novel research contribution 
is unique and is strongly recommended for use in this area of mathematical finance. 
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1.  Introduction 

This paper considered the Black-Scholes (BS) 
partial differential equation (PDE) and some of its 
dynamics of financial markets. BS PDE of option 
pricing is a key factor in financial Mathematics since it 
explores the changes of options value as a function of 
securities and time dependent. The relevance of 
options valuation was first demonstrated by (Black 
and Scholes, 1973) when there was difficulty to option 
traders to value an option at expiration. After the early 
discovery, a great number of empirical studies have 
examined the validity of the model such as (Hull, 
2003), (Macbeth and Merville, 1979), (Nwobe et al., 
2019), (Razali, 2006) and (Rinalini, 2006) and 
discovered that the model misprices options which 
will not in any way benefit the option traders.  

That is to say the correctness of the model is still 
questionable and the major part of the model is how to 
predict the future volatility of the underlying asset 
(Wokoma and Amadi, 2019), hence determine a 
correct option price. In this paper, we shall be 
interested in Crank-Nicolson (CN) finite difference 
method for valuation of European put option which 

have gained the interest of researchers for finding 
approximate solutions to PDEs and this interest is 
driven by demand of applications of societal problems. 
From the results of BS model, we develop a new 
method of assessing pricing effects which will reduce 
pricing bias of BS model. To this end, the bias in 
valuation can cause unreasonable loss for traders; 
valuation is a key feature of trading system. 
 
2.  Methodology 

The Black-Scholes model is based on seven 
assumptions as indicated below:  

The asset price follows a Brownian motion with 


and 


 as constants. 

There are no transaction costs or taxes. All 
securities are perfectly divisible. 

There is no dividend during the life of the 
derivatives. 

There are no riskless arbitrage opportunities. 
The security trading is continuous. 
They gave the formula for the prices of European 

put option as: 
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Where, 

 P is Price of a put option, 

S  is price of underlying asset, 

 K is the strike price, 

 r is the riskless rate, 

 T is time to maturity, 

 
2

is variance of underlying asset, 

 


is standard deviation of the (generally 

referred to as volatility) underlying asset, and N is 
the cumulative normal distribution.  
 
2.1  Derivation of Black-Scholes (BS)  
 Partial Differential Equation (PDE) 

According to [9], the derivation of BS PDE is 
based on Ito process with an assumption that the stock 
prices follow a geometric Brownian motion, i.e., 

dS Sdt Sdx  
   (2) 

Where, 

S  is the stock price,  
  is the drift,  
  is the volatility of underlying asset and  

dx  is a wiener process. 
 

Suppose we have an option whose 
V(S, )t

 

depends only on S and t . Assuming also that the asset 

price is perturbed by a small change dS , then the 

function V  will also change. Using Ito’s lemma. 
 

2
2 2

2

1

2

V V V V
dV S dx S S dt

S S S t
  

    
    

     (3) 

 

According to [10], the value of one portfolio 
having one stock can be expressed with the function

 ,V S t
. 

V S       (4) 

The change in the portfolio at time dt in (4) is 
given by 

d dV dS       (5) 

Putting (2), (3) into (5), we find that   follows 
random walk, given by. 

2
2 2

2
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2

V V V V
d S d x S S S d t

S S S t
    
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                 

To eliminate the random component in this 
random walk, let 

V

S


 

    (6)  

Note that is the value of 

V

S



  at the start of the 

time step dt . This results in a portfolio whose 
increment is wholly deterministic so that 
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Now that the portfolio is riskless it should earn 
riskless return. The change in the portfolio at time 

dt becomes (after substituting (2) and (3) into (5) 

and dividing through by dt ) 
2

2 2

2

1

2

V V
d r dt S dt

t S
  

  
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t S
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This implies that 
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This gives the solution 
2

2 2

2

1
0

2

V V V
S rS rV

t S S
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 (8) 

 
This is the Black-Scholes partial differential 

equation. 
2.2 European Put Option 

The B-S PDE for European put option with value 

 ,P S t
 is defined as in (9) 

2
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1
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P P P
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t S S
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With the following initial and boundary 
conditions: 
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2.3 The Crank-Nicolson finite difference  
Method for an Option pricing Model 

The Crank-Nicolson finite difference method is 
to overcome the stability short-comings by applying 
the stability and convergence restrictions of the 
explicit finite difference methods. It is essentially an 
average of the implicit and explicit methods. However, 
to carry out a Crank-Nicolson approximation method 
on Black-Scholes partial differential equation, there 
will be a price time mesh; the vertical axis in the mesh 
represents the stock prices, while the horizontal axis 
represents time.  

Thus, each grid point in the mesh denotes a 

horizontal index i  and a vertical index 
j

 such that 
each point in the mesh is the option price for a definite 
time and a definite stock price. At all times in the 

mesh 
j s

 is equal to the stock price, and i t  is 
equal to the time. There exist boundary conditions 
which aids in the numerical computations; using the 

pay-off function. The expiration, t T  and the 
option are computed for all the different stock prices 
using boundary conditions. To obtain the prices at 

0t  , the model solves backwards for each time step 

from t T (Sargon, 2017). 

 
Recall that the Black-Scholes partial differential 

equation (8). 

Let a function 
 S,V t

 in two dimensional grid 

points, that is i and j  denote the indices for stock 

price, S  and time, t respectively. The function

 , j
iV S t V

; this can be stated with the following 
difference scheme by Hull (2003). 

2 21

2
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i i i

Z S DSS rS DS rV  
 (11) 

Where,  

S i s  , for 0 i m  , 
t j t 

for
0 j i 

 

1 1
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2j j j
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2
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j j
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S
V V 




   (13) 
 
Taking forward difference and backward 

difference approximations respectively yields implicit 

and explicit schemes given below.  
If we use a forward difference approximation to 

the time partial derivative we obtain explicit scheme 
1

0

j j

ji i

it
V V

Z



 
   (14) 

And similarly we obtain the implicit scheme 
1

1
0

j j

ji i

it
V V

Z



 

   (15) 
The averages of equations (14) and (15) yields 

Crank-Nicolson method of approximation. 
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From equation (16) 
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Where, 
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Collecting like terms of  and simplifying gives 

 (18) 
and 

 (19) 
Using (18) and (19) solving simultaneously and taking the average of these two equations we obtain; 

  (20)  

The expressions inside the square brackets of (18) are replaced with the . We obtain the following 
equation 

 (21) 
Where, 

. 

.   
2.4 Modeling Pricing Effects of put options 
 

Let iX , 1,..., ,i T
be the Black-Scholes exact 

values for T  trading days and 
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Here, we use standard deviation in creating 
strategies for investing and trading because it helps 
measure market volatility and predict performance 
trends. Note that 

1 2m m T 

if and only if 
0,id 

 otherwise 

0 1 2m m m T  
, where 

0m
is the number of zero differences 

( 0).id 
 

The standard deviations of the different components 

, ,i i id d and d d d d are
    
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2 2 2

1 2
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     (22) 
For simplicity and without loss of generality, we 

also define the following: 

1 2 3, , ,S S S
representing

,
d d

S S 
 and dS

 
respectively and 

, 1,2,3k
k

S
k


 

  (23) 

Where   is 252 trading days.  
2.5  Criteria for selection 

Let the index of price function be k iX
, 

Where k
 is a constant and iX

 a vector.

 , ,k iX A B C 
Where

, ,A B
 and C  are the 

products of iX
 and 1 2, 

and k
 respectively. The 

maximum value 1r  will be referred to as overpricing 

if 1r  =max
{ , , }A B C

, is middle value, 2r  as under 

pricing and 3r  as no mispricing if 3r   min

{ , , }A B C
 in line with Ekakaa et al. (2016) and Etuk 

(2014). 
 
3.  Results and Discussion 

 
Figure 1: Comparing Black-Scholes with Crank-Nicolson numerical solution under different stock prices for put 
option. 

 
Values in Tables 1 and 2 were generated by 

fixing r=0.2, k=100 while allowing 0S
 and  vary in 

(1) for put options such that 
 0 40,50, 60, 70S 

,
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presented in column 1 are 

the difference values of  , columns 2 and 3 are the 
exact values of BS and that of CN respectively. The 

4th column gives the relative error (RE) of the 
difference between the estimated prices using BS and 

CN pricing schemes given by| | /BS CN BS . RE 
is the ratio of absolute difference between BS and CN 
to BS such that when this ratio is very small, the 
performances of both BS and CN are equivalent, 
otherwise they are noticeable difference as can be 
observed in Table 1. 
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The difference in performance increases from 

near zero with increasing value of  . Visual 
inspection of Figure 2 show that BS and CN are 

indistinguishable when 0 0.5   and the 

differences start to when   is in the range

0.5 1  . Using same values of , r  and K  as in 

left panel of Table 1, only 0S
 changed from 40 to 50 

in the Table1(right panel) panels respectively. From 
Tables 1 and 2, we observe that besides influence of 

  on RE, the initial price 0S
 increases both BS exact 

values and CN approximate values and by implication, 
increases the RE as between BS and CN with varying 

values of 0S
and . 

 
Table 1: Comparing the performance between the Black-Scholes exact values and Crank-Nicolson finite difference 
method for European Put Option with K = 100, r = 0.2 and T = 1 

Sigma 
So = 40, K = 100 So = 50, K = 100, 
B-S Exact values C-N Relative Error B-S Exact Values C-N Relative Error 

0.25 41.8817  41.8778 9.3119E-05 32.0183 31.9605  1.8052E-03 
0.3 41.9211 41.8977 5.5819E-04 32.2717 32.1011 5.2864E-03 
0.35 42.0213 41.9458 1.7967E-03 32.6694 32.3076 0.01107 
0.4 42.2025 42.0283 4.1277E-03 33.1966 32.5633 0.01908 
0.45 42.4721 42.1446 7.7109E-03 33.8322 32.8510 0.029002 
0.5 42.8277 42.2898 0.01256 34.5553 33.1562 0.04049 
0.55 43.2622 42.4578 0.01859 35.3479 33.4685 0.05317 
0.6 43.7659 42.6422 0.02568 36.1951 33.7805 0.06671 
0.65 44.3292 42.8374 0.03365 37.0850 34.0870 0.08084 
0.7 44.9429 43.0389 0.04236 38.0079 34.3849 0.09532 
0.75 45.5988 43.2432 0.05166 38.9559 34.6722 0.10996 
0.8 46.2893 43.4474 0.06139 39.9226 34.9476 0.1246 
0.85 47.0083 43.6494 0.07145 40.9028 35.2108 0.1392 
0.9 47.7501 43.8478 0.08172 41.8921 35.4616 0.1535 
0.95 48.5099 44.0415 0.09211 42.8869 35.7001 0.1676 
1.0 49.2837 44.2297 0.10255 43.8839 35.9265 0.1813 

 
Table 2: Comparing the performance between the Black-Scholes exact values and Crank-Nicolson finite difference 
method for European Put Option with K = 100, r = 0.2 and T = 1 

Sigma  
So = 60, K = 100 So = 70, K = 100 
B-S Exact values C-N Relative Error B-S Exact Values C-N Relative Error 

0.25 22.7672 22.4676 0.01316 14.9160 14.0823 0.0559  
0.3 23.4960 22.8954 0.02556 16.1862 14.8246 0.0841 
0.35 24.3677 23.3644 0.04117 17.5121 15.5168 0.1139 
0.4 25.3408 23.8438 0.05907 18.8713 16.1517 0.1441 
0.45 26.3860 24.3156 0.07847 20.2504 16.7300 0.1738 
0.5 27.4826 24.7698 0.0987 21.6405 17.2554 0.2026 
0.55 28.6158 25.2013 0.1193 23.0357 17.7326 0.2302 
0.6 29.7745 25.6080 0.1399 24.4317 18.1664 0.2564 
0.65 30.9508 25.9896 0.1603 25.8252 18.5617 0.2813 
0.7 32.1384 26.3466 0.1802 27.2137 18.9225 0.3047 
0.75 33.3325 26.6801 0.1996 28.5950 19.2526 0.3267 
0.8 34.5291 26.9914 0.2183 29.9675 19.5554 0.3474 
0.85 35.7250 27.2822 0.2363 31.3296 19.8338 0.3669 
0.9 36.9177 27.5537 0.2536 32.6800 20.0903 0.3852 
0.95 38.1049 27.8076 0.2621 34.0175 20.3272 0.4024 
1.0 39.2848 28.0450 0.2861 35.3412 20.5466 0.4186 

 
In Figure 3, overpricing yields an upward trend. 

Then the underpricing falls in between the two plots 
which is in line with our criteria for selections of 

pricing effects. No-mispricing lie along sigma axis 
indicating no pricing error during the trading period. 
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Figure 2: The Levels of relative errors under different initial stock prices for put option. 

 

Table 3: Levels of pricing effects under Put option when initial stock 0 40S 
 

 So = 40, K = 100, 0.2r    

Sigma B-S Exact values C-N Over-pricing Under-pricing No Mispricing 
1 2

*
3

r r

r




 

0.25 41.8817 41.8778 6.6089 4.1337 2.3119 2.4752 
0.3 41.9211 41.8977 6.6151 4.1376 2.3140 2.4775 
0.35 42.0213 41.9458 6.6310 4.1475 2.3196 2.4835 
0.4 42.2025 42.0283 6.6596 4.1654 2.3296 2.4942 
0.45 42.4721 42.1446 6.7021 4.1920 2.3445 2.5101 
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0.85 47.0083 43.6494 7.4179 4.6397 2.5949 2.7782 
0.9 47.7501 43.8478 7.5350 4.7129 2.6358 2.8221 
0.95 48.5099 44.0415 7.6549 4.7879 2.6777 2.867 
1.0 49.2837 44.2297 7.7770 4.8643 2.7205 2.9127 
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Figure 3: Levels of pricing effects when initial stock is 40 for put option. 

 
 

Table 4: Levels of pricing effects under Put option when initial stock 0 50S 
 

So = 50, K = 100, 0.2r   

Sigma B-S Exact values C-N Over –pricing Under –pricing 
No Mis - 
Pricing 

1 2

*
3

r r

r




 

0.25 32.0183 31.9605 7.9694 4.2744 3.6117 3.695 
0.3 32.2717 32.1011 8.0324 4.3083 3.6402 3.7241 
0.35 32.6694 32.3076 8.1314 4.3614 3.6851 3.77 
0.4 33.1966 32.5633 8.2626 4.4317 3.7445 3.8309 
0.45 33.8322 32.8510 8.4208 4.5166 3.8163 3.9042 
0.5 34.5553 33.1562 8.6008 4.6131 3.8998 3.9877 
0.55 35.3479 33.4685 8.7981 4.7189 3.9872 4.0792 
0.6 36.1951 33.7805 9.0090 4.8320 4.0828 4.177 
0.65 37.0850 34.0870 9.2305 4.9508 4.1832 4.2797 
0.7 38.0079 34.3849 9.4602 5.0741 4.2873 4.3861 
0.75 38.9559 34.6722 9.6961 5.2006 4.3942 4.4955 
0.8 39.9226 34.9476 9.9367 5.3297 4.5033 4.607 
0.85 40.9028 35.2108 10.1807 5.4605 4.6138 4.7202 
0.9 41.8921 35.4616 10.4269 5.5926 4.7254 4.8343 
0.95 42.8869 35.7001 10.6745 5.7254 4.8376 4.9491 
1.0 43.8839 35.9265 10.9227 5.8585 4.9501 5.0642 
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Figure 4: Levels of pricing effects when initial stock is 50 for put option. 
 
It is observed in Figure 4 that the three pricing 

effects moved upwardly with the same initial stock 
price of 50. Overpricing plot is an indication of high 
prices of put options which is on disadvantage to an 
option trader. Underpricing plots comes very close to 
no-mispricing which cannot be used for decision 

making; but for no-mispricing the trend lies along 
sigma axis but starting from point of origin. Wokoma 
and Amadi (2019) have reported the contribution of 
mathematical model in the analysis of the impact of 
action bitters on the kidney function of Albino Wister 
Rats with positive outcome. 

 

Table 5: Levels of pricing effects under Put option when initial stock 0 60S 
 

So = 60, K = 100, 0.2r    

Sigma BS Exact values CN Over-pricing Under-pricing  No Mis-pricing 
1 2

*
3

r r

r




 

0.25 22.7672 22.4676 7.7113 4.1869 3.5653 3.5244 
0.3 23.4960 22.8954 7.9581 4.3209 3.6795 3.6372 
0.35 24.3677 23.3644 8.2533 4.4812 3.8160 3.7721 
0.4 25.3408 23.8438 8.5829 4.6602 3.9684 3.9227 
0.45 26.3860 24.3156 8.9369 4.8524 4.1320 4.0845 
0.5 27.4826 24.7698 9.3084 5.0541 4.3038 4.2543 
0.55 28.6158 25.2013 9.6922 5.2624 4.4812 4.4298 
0.6 29.7745 25.6080 10.0846 5.4755 4.6627 4.6091 
0.65 30.9508 25.9896 10.4830 5.6919 4.8469 4.7911 
0.7 32.1384 26.3466 10.8853 5.9103 5.0329 4.975 
0.75 33.3325 26.6801 11.2897 6.1298 5.2199 5.1599 
0.8 34.5291 26.9914 11.6950 6.3499 5.4073 5.3451 
0.85 35.7250 27.2822 12.1001 6.5698 5.5945 5.5308 
0.9 36.9177 27.5537 12.5040 6.7892 5.7813 5.7148 
0.95 38.1049 27.8076 12.9061 7.0075 5.9672 5.8986 
1.0 39.2848 28.0450 13.3058 7.2245 6.1520 6.0813 
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Figure 5: Levels of pricing effects when initial stock is 60 for put option. 

 
As shown in Figure 5, the overpricing effect 

increased on steady trend. This is true because by 
definition. It means to charge too high a price for 
product. The underpricing effect moved below the 
mean level of the entire plot which is an indication for 
underpricing of option values. So no-mispricing still 
falls within the region starting from the origin lied 
along sigma axis; this is an impression of goods and 
services of the option trader which matches the 

intrinsic value of the item during the trading days of 
one year. In Figure 6 scenario, we observed that 
overpricing effect showed an upward trend. 
Underpricing merged with no-mispricing because of 
price differences. With this two pricing effects profit 
making issue. 

In Figure 7, the plot reveals that the initial stock 
price of 40 remains the best for put options.  

 

Table 6: Levels of pricing effects under Put option when initial stock 0 70S 
 

So = 70, K = 100, 0.2r   

Sigma BS Exact values CN Over-pricing Under-pricing No Mis-pricing 
1 2

*
3

r r

r




 

0.25 14.9160 14.0823 6.1439 3.1413 3.1309 3.013 
0.3 16.1862 14.8246 6.6671 3.4088 3.3975 3.2583 
0.35 17.5121 15.5168 7.2132 3.6880 3.6758 3.5252 
0.4 18.8713 16.1517 7.7731 3.9743 3.9611 3.7988 
0.45 20.2504 16.7300 8.3411 4.2647 4.2506 4.0764 
0.5 21.6405 17.2554 8.9137 4.5575 4.5423 4.3562 
0.55 23.0357 17.7326 9.4884 4.8513 4.8352 4.6371 
0.6 24.4317 18.1664 10.0634 5.1453 5.1282 4.9181 
0.65 25.8252 18.5617 10.6374 5.4388 5.4207 5.1986 
0.7 27.2137 18.9225 11.2093 5.7312 5.7122 5.4781 
0.75 28.5950 19.2526 11.7783 6.0221 6.0021 5.7562 
0.8 29.9675 19.5554 12.3436 6.3112 6.2902 6.0324 
0.85 31.3296 19.8338 12.9047 6.5980 6.5761 6.3067 
0.9 32.6800 20.0903 13.4609 6.8824 6.8595 6.5785 
0.95 34.0175 20.3272 14.0118 7.1641 7.1403 6.8477 
1.0 35.3412 20.5466 14.5570 7.4429 7.4181 7.1141 
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Figure 6: Levels of pricing effects when initial stock is 70 for put option. 

 

 
Figure 7: Plots of no-mispricing effects with different initial stock prices. 
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Figure 8: Surface view of BS put option when the initial stock price is 40 with variations of sigma 
 
Figure 8 is skewed to the right; visual inspection 

shows a constant increase as   increases. This plot 
agrees with result of Black and Scholes of 1973 that 
sigma are constant throughout the life of an option. 

0 :H
 The BS put option and CN numerical 

solutions are from the same distribution. 

1 :H
 They are not from the same distribution. 

 
Table7: Kolmogorov-Simirnov test for BS and CN values come from a common distribution for Put option.  

 0S
 

   

  40 50 60 70 
0.01 Reject Accept Accept Accept 
0.05 Accept Accept Accept Accept 

 

In Table 7, we noticed that at    0.01 with 

0S 
 40, 0H

 was rejected but when 0S 
 50, 60 and 

70, 1H
 was accepted. So when level of significance 

increased to 0.05 using various initial stock prices of 

40, 50, 60 and 70 1H
 was accepted. We can conclude 

by saying there is significant difference between BS 
and CN.  

 
4. Conclusion and Recommendation 

In this work, the analytical formula for valuing 
European Put options has been valued as well as 
Crank-Nicolson numerical solution for different stock 
prices. However, because of biasedness of BS PDE in 
mispricing options we developed a new method of 
assessing pricing effects on the premise to reduce 
pricing bias. Also all the initial stock prices of “no 
mispricing” were compared in Figure 8; results 

showed that initial stock price of 40 are the best for 
put options.  

Thus, put option can only be exercised when the 
actual price of the asset is less than the strike price of 
the asset at expiration date. This option is said to be in 
the money. In another scenario, the model was 
subjected to goodness of fit test using KS, the test 
revealed that put options were statistically significant. 
Consequently, our novel research contribution is 
unique and is strongly recommended for use in this 
area of mathematical finance. 
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