What Might The Fine Structure Constant $1/\alpha = hC/(2\pi e^2) = 137.036$ Mean?

Dongsheng Zhang Email: <u>zhangds12@hotmail.com</u> 7/24/2011

【Abstract】. Through making the analogous comparisons of Dirac's large number $1/L_n$ to the fine structure constant $1/\alpha$, and of gravitational force F_g to F_b , the better reasonable conclusion might be that, $1/\alpha$ could be 137.036 times or proportion of the strong force Fn to the electromagnetic force F_e in the atomic nucleus.

[Dongsheng Z. What Might The Fine Structure Constant $1/\alpha = hC/(2\pi e^2) = 137.036$ Mean?] Report and Opinion, 2010;2(1).

Keywords: analogous comparison; Dirac's large number $1/L_n$; constant $1/\alpha$; gravitational force; atomic nucleus.

[1]. The fine structure constant $1/\alpha$ is defined to, $1/\alpha = hC/(2\pi e^2) = 137.036$ (1a) In formula (1a), $h=6.626\times10^{-27}g*cm^2/s$ =Planck constant; $C = 2.998\times10^{10}cm/s = light$ speed; $e = 4.80325\times10^{-10}esu = 1.6022\times10^{-19}C$; then, $1/\alpha = hC/(2\pi e^2) = 6.626\times10^{-27}\times2.998\times10^{10}$ / $[2\pi (4.80325\times10^{-10})^2] = 137,0368\approx 137.036$.

Let's explore the physical property of the fine structure constant $1/\alpha$ below.

L2 • **Firstly, let's look back the origin of Dirac's** large number L_n , According to the idea of Pual Dirac's "large number hypothesis", comparing the electromagnetic force F_e to the universal gravitational force F_g , taking the hydrogen atom as an example, the mass of proton $m_p = 1.6727 \times 10^{-24} g$, the mass of electron $m_e = 9.1096 \times 10^{-28} g$, the capacity of electron $e = -e = 1.602 \times 10^{-19} C$, r is the distance between two electrons, G = gravitational constant= 6.6726×10^{-8} cm³/s²*g, k= 9.0×10^9 N•m²/C²

$$\begin{aligned} \mathbf{F_g} &= Gm_p m_e \ / r^2 = 6.6726 \times 10^{-8} \times 1.6727 \times 10^{-8} \\ \times 9.1096 \times 10^{-28} / \ r^2 &= 101.67 \times 10^{-60} / \ r^2 \ [1] \end{aligned} \tag{2a} \\ \mathbf{F_e} &= \ ke^2 / r^2 = 9.0 \times 10^9 \ N \cdot m^2 / C^2 \times (1.6022) \end{aligned}$$

 $\mathbf{r_e} = \frac{10^{-19} \text{C}}{10^{-19} \text{C}} / \frac{10^{-19} \text{C}}{r^2} = 9.0 \times 10^9 \times 10^5 \times 10^4 \times (1.6022 \times 10^{-19} \text{C})^2 / \frac{10^{-19} \text{C}}{r^2} = 23.10 \times 10^{-20} / \frac{10^{-19} \text{C}}{r^2}$ (2b)

$$/r^2 = 23.10 \times 10^{-20} / r^{2[1]}$$
 (2b)
 $\mathbf{F_e}/\mathbf{F_g} = L_n = 23.10 \times 10^{-20} / 101.67 \times 10^{-60} = 2.35 \times 10^{39[1]}$ (2c)

(2c) shows, that under the same distance r, the non-dimension constant $L_n = ke^2/Gm_pm_e = 2.35\times10^{39}$ is the times of the electromagnetic force F_e to the universal gravitational force F_g .

【3】. Since $L_n = F_e/F_g = ke^2/Gm_pm_e$ is equal to a constant 2.35×10^{39} , two patterns of Gm_pm_e/e^2 and $hC/(2\pi e^2)$ are analogous, and $1/L_n$ and $1/\alpha$ are all non-dimension constants, $1/\alpha = hC/(2\pi e^2)$ might be guessed as a proportion of two different forces. Let's apply some formulas of black holes (BH) as

analogous comparison. M_b is mass of any black hole, m_{ss} is a Hawking quantum radiation emitted from the radius of the Event Horizon \mathbf{R}_b of BH M_b ,

so,
$$\underline{\mathbf{m}_{ss}} \underline{\mathbf{M}_{b}} = \mathbf{h} \mathbf{C} / 8\pi \mathbf{G}^{[2]}$$
 (3a)

Let
$$4Gm_{ss}M_b = hC/2\pi$$
 (3b)

$$4Gm_{ss} M_b/e^2 = hC/2\pi e^2$$
 (3c)

 $Gm_{ss}M_b/R_b^2=F_b$, which is the gravitational force of M_b to m_{ss} , and $F_e=e^2/r_n^2$, **if** $r_n=2R_b$, then,

$$Fn/F_e = hC/2\pi e^2 = 1/\alpha = 137.036$$
 (3d)

Correspondingly, Fn might be strong force, i.e. acting forces between quarks in the atomic nucleus. Therefore, under $r_{\rm p}=R_{\rm b}$,

$$Fn = hC/2\pi r_n^2 = F_b$$
 (3e)

How strong is the strong force Fn? 1*. Let $r_n \approx 10^{-13} cm$, $Fn = hC/2\pi \ r_n^2 = 6.626 \times 10^{-27} \times 2.998 \times 10^{10}/2\pi \times 10^{-26} = 0.316 \times 10^{10} \ dyne$. And $F_e = e^2/r_n^2 = (4.80325 \times 10^{-10})^2/10^{-26} = 23.07 \times 10^6 \ dyne$. Then, $Fn/F_e = 0.316 \times 10^{10}/23.07 \times 10^6 = 136.97 \approx 137.036 = 1/\alpha$. 2*. Let = $R_b = 10^{-13} cm$, thus, $M_b = 10^{15} \ g$, $m_{ss} = 1.76 \times 10^{-24} \ g \approx mass$ of a proton. It shows, in case of $r_n = 2R_b = 10^{-13} cm$, the strong force $F_n = F_b$, i.e. F_n is about equal to the gravitational force of a BH of $M_b = 10^{15} \ g$ to a $m_{ss} \approx 1$ proton. The reason why F_n is analogous to F_b , is both might accord with quantum mechanics.

[4] • Conclusion: Just as $F_e/F_g = 10^{-39} = 1/L_n$, $Fn/F_e = 137 = 1/\alpha$. Therefore, L_n and α may be considered as the coupling coefficients. Since $L_n = F_e/F_g$ is the coupling coefficient of the electromagnetic force F_e to the universal gravitational force F_g , and $1/\alpha = Fn/F_e$ might be the coupling coefficient of the strong force F_n to F_e . Owing to that F_n has not been clearly recognized and calculated out right now, some formulas of black holes are applied by author as analogous comparison. I think, $F_n = hC/2\pi r_n^2$ as

the strong force in atomic nucleus and $1/\alpha = Fn / F_e$ as a coupling coefficient is better reasonable.

====The End====

[references]:

[1]. Dongsheng Zhang: 《Why Could Paul Dirac Not Derive The Correct Conclusions From His "Large Number Hypothesis"? 》。Nature and

Science, 2008;6(4), ISSN 1545-0740, http://www.sciencepub.org/nature/0604.

[2]. Dongsheng Zhang: 《Information Amount and Entropy of Black Holes(BH) Mb and its

Hawking Quantum Radiation(HQR) mss》。

Report and Opinion, 2011;3(4).

http://www.sciencepub.net/report/report0304/