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1. Introduction

Differential equations can be used to model
different physical systems such as sociological,
economical, biological and chemical etc. Also in
literature physical problems are investigated by
differential equations, which are mostly handled by
the common methods, variational iteration method
(VIM), Adomian decomposition method (ADM),
Splines (S), Homotopy perturbation method (HPM).
The non perturbed techniques (DTM) and ADM)
concern nonlinear problems but the region of
convergence of their series solution is generally small.
Recently Herisanu and Marinca et al. [3-5] introduced
OHAM for approximate solution of nonlinear
problems of thin film flow of a fourth grade fluid
down a vertical cylinder. They used OHAM for

LFG)+g()+ NE)) =0,B[F,fl—§] -0

understanding the behavior of nonlinear mechanical
vibration of an electrical machine. By using this
method they investigated solution of nonlinear
equations arising in the study of state flow of a fourth
grade fluid past a porous plate. This method supplies
the need to control the convergence.In general the
OHAM solution agrees with the exact solution.The
graphs of the two solutions are coincident. We have
applied OHAM to first, second and third order
boundary Value problems and have investigated that
the original exact solution agrees with the numerical
solution, the error noted is small.This method is
effective and is easy to use.

2. Analysis of the Method OHAM

Considering the following differential equation

2.1a)

Where L is taken as linear operatory is independent variable F(»is an unknown function &) is a known

function, NE()is a nonlinear operator and B is a boundary operator. According to the idea of OHAM we

construct a homotopy as given below
H(@(y,p),p):Rx[0,1]> R
That satisfies

(1= p)ILO(y, p))+g(¥)]=h(P)LEO(y, p))+g(¥)+ N(O(y, p))],

B(é’(y,p),a(e(y’p)}o (2.2a)
% Where Y €RP <[o.1] is an embedding
parameter, h(P) is a nonzero auxiliary function for p# 0, /2 (0)=0 and o(y.p) is an Unknown function.Evidently, for
p=0 and p=1 it restrains that Unknown function.Evidently, for p=0 and p=1 it restrains that Oy, =F(»)
respectively. Thus as 7 varies from O tol, the solution ®0>P) approaches from ) to 1) where H() s

obtained from Equation (2.2 a) for £~ 0 and we have.
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L(l%(y))+g(y)=053(1%,[;—jjj=0 (2.3a)

Now choosing auxiliary function h(P)in the following pattern
h(p)= pC,+p°C, +... (2.4a)

Where Q.G "are constants to be determined latter. 7(?) can be expressed in many forms as investigated by V.

Marinca [3-5].To get an approximate solution one can expand o(y.p.G) in Taylor’s series about p in the

] 0(y,p.C)=F,(»)+ > F(».C.C,,..C,)p" (2.5q)
following Pattern. =

Making use of equation (2.5a) in equation (2.2a) and comparing the coefficients of like powers of ¥ we have
the following linear equations Zeroth order problem is given by equation (2.3a) and the first and second order
problems are given by equations (2.6a) and (2.7a)

L(F(»))+g(y)=CN,(F(»),B [E,i—ij =0 (2.62)
L(F,(») = L(F(y)) = C,N,(F,(») + C[L(F (»)) + N, (F, (), ()],
B(Fz,ﬁ]:o (2.7a)

dy

The general governing equations for £O) are given by
k=1

L(F, (7))~ L(F,_,(») = CNy(F, () + D CIL(F,_ ()
i=1

dF,
+N (B, By (D), By (), k= 2,3.»-,B(Fkadykj =0 (2.84q)

Where Vn(FoO0) F ()0 Fi(V) s the coefficient of 2 in the expansion of V(@7 P)) about the embedding
parameter ?

N@O(y.p.C) = Ny(F(y)+ 2N, (Fy. F...F,) p" (2.9a)
m=1
It has been investigated that the convergence of the series (2.5a) depends on the auxiliary constants C,, C,,....If
o -1 0(»,C)=F,(»+ Y FE(1.C,C,..C) (2.10a)
it is convergent. At P~ then we have k=l
The result of the mth order approximations are
F(y.C,,C,,..C,)=F,(»)+ > F(1.C,,C,,..C,) (2.11a)

i=1
Using equation (2.11a) into equation (2.1a) we get the residual
R(»,C,C,....C)=L(F(y,C,,C,...C ) +g(»)+ N(F(»,C,C,..,C,))

(2.12a4) 1t R=0 then F be the exact solution.
Generally it does not happen especially in nonlinear problems. In order to get the Optimal Values of Cis i=1,2,3...

we first construct the Functional Values of Cis i=1, 2, 3... we first construct the Functional.

b
J(C,,CyesC,) = [ R (3,C,, G, C, )y (2.13a)
And then minimizing it we get
0 . Y (2.144)
ac,  ac, ac,

Knowing the values of GGG, The approximate solution of order m is determined. Where a, b lie in domain
of the concerned problem using the least square method we get OHAM solution.
3. Numerical Problems
Problem 3.1. [First order linear]
Consider the following linear differential equation
F'(y)-F(y)—ycosy+ysiny—siny=0,F(0)=0 (3.1b)
The exact solution of the problem is
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F(y)=ysiny (3.20)

Applying the method mentioned in section 2, the Zeroth order problem is
F{(»)=0,F(0)=0 (3.3b)

Its solution is

F(»=0 (3.4b)

First order problem is
F (y,C)=-ycos yC,—sinyC +ysiny C, ~C,F, (»)+ (1 +C)F (),

F(0)=0 (3.5b)
Its solution is
F(y,C)=-ycosyC, +sinyC - ysinyC, (3.6b)

Second order problem is

, —ycosyC, —siny C, + ysiny C, - G, Fy () - CF(y)

F,(».C.C,)= , ,

+CF, () +(1+C)E L F(0)=0
(3.7b)
F,(y,C,,C,)=-ycosyC, +sin yC, - ysin y C, —2C,* +2cos y C,>

—2ycos yC +2sinyC> — ycos yC, +sin yC, — ysin y C,

Its solution is (3-8b)
Third order problem is

F/(5.C,,C,,C,) =—ycos yCy —siny C, + ysin y C, - C,F, (¥) — C,F, (»)

~CE(0)+GE ()+GF (n)+1+C)E (), F,(0)
(3.9b)
Its solution is
F(3.C,G,,G)==ycos yC +sinyC —ysinyC —4C7 +4cos yG* ~4ycos y G’
+sinyG* —6C +2yC’ +6¢c0s y G =2y cos y G +2ysiny G — ycos y C,
+sinyC, — ysin yC, —4C,C, +4cos yCC, —4ycos yC,C, +4siny CC,
—ycosyC, +sinyC, —ysinyC, (3.100)
Now we use equations (3.4b), (3.6b), (3.8b), (3.10b), the third order approximate solution by OHAM for p=1 is
F(y,Cl,CZ,Q) =FWM+E0,.C)+E(0,C.C)+F(».C.G,.C)
(3.11b)

a=0,b=1

Using the technique mentioned in section 2 on the domain ‘we use the residual

R=F'—F—ycosy+ ysiny—siny (3.12b)
The following values of GGG are obtained

C, =-1.1763684395430054,C, =0.11688800369849017,

C, =-0.0026970142170896472 (3.13b)

Considering the values of G ’CZ’C3, the approximate solution becomes

F(y)=1.01231)" - 0.0480322 y° —0.105409 * —0.0223286 y° +0.00421533 *
+0.00112045 y” —0.0000878039 y* —0.0000237398 y° +1.11482x10™° y"°
+2.90161x107 ' ~9.50035x10°" y'* ~2.33658x10” y"* +5.79949x10™" "
+1.3396x 107" 3 + O(»'%) (3.14a)

Table 3.1 displays values of exact solution (3.2b) OHAM solution (3.14b) and the error.

M Exact sol OHAM sol HPM sol HAM sol Er OHAM Er HPM Er HAM
0.0 0.000000 0.000000 0.000000 0.0000000 0.0 E-0 0.0 E-0 0.0 E-0
0.1 [0.00998334 0.0100643 0.00965034 0.00999199 8.0 E-6 3.3E4 8.0 E-6
0.2 10.0397379 0.0399325 0.0370779 0.0397289 1.9E-4 2.6 E-3 4.9 E-6
0.3 ]0.0886561 0.0889059 0.0797368 0.0886099 24E-4 89E-3 4.6 E-5
0.4 |0.155767 0.155987 0.134773 0.155695 2.1E-4 2.0E-2 7.2 E-5
0.5 ]0.239713 0.239861 0.199079 0.239691 1.4 E-4 4.0 E-2 2.1 E-5
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y Exact sol OHAM sol HPM sol HAM sol Er OHAM Er HPM Er HAM
0.6 [0.33785 0.333884 0.269344 0.338939 9.8 E-5 6.9 E-2 1.5 E-4
0.7 [0.450952 0.451076 0.342124 0.451411 1.2 E-4 1.0 E-1 4.5 E-4
0.8 |0.573885 0.574113 0.413894 0.574712 2.2 E-4 1.5 E-1 8.2 E-4
0.9 |0.704994 0.705338 0.481116 0.706085 3.4 E-4 2.2 E-1 1.0 E-3
1.0 10.841471 0.841762 0.540302 0.842428 2.9E-4 3.0E-1 9.5 E-4
In the Table 3.1 the values of HPM, HAM and
their errors are also given. From the table given above os |
we conclude that the errors of the technique, OHAM [
are smaller than the errors of HPM and HAM. 0o |
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From the figure 3.1(a) we investigate that the
graphs of OHAM and exact solutions coincide while
in figure 3.1(b) the graphs of HPM and exact solutions
are not coincident and the graphs of figure 3.1(c) are
again coinciding but generally the graphs of OHAM
are in best agreement with their exact solutions. From
the table 3.1 given above we reach to the conclusion
that the exact and OHAM solutions are in best

agreement in the domain a=0,b=1 , Solid Curve=
exact solution, Dotted curve= OHAM solution. We
conclude that the two Curves coincide.

Problem 3.2: [Second order linear]

For ¥ €101 \ye consider the following differential equation

F'()+2F' (y)+F(»)=0,F(0)=1F'(0)=0
The exact solution of the problem is
F(y)=e’+ye”

(3.1¢)

(3.2¢)

Applying the technique, OHAM our Zeroth order problem is

E (0 +2F (0 +F,(»)=0,F(0)=1,F/(0)=0

Its solution is Fo(y) =cosy
First order problem is

(3.3¢)
(3.4¢)

F'(3,C)==F(y)-2F (»)+ 1+ C)[F,(») +2F,(»)+ F}(»)].F,(0) =0,

F(0)=0 (3.5¢)

Its solution is
1{2ycosy—siny+cos2ysiny—cosysin2y+2ycos yC,

Fl(y’cl):2[—sinyC1+cos2ysinyC1—cosysinZyC1 ]

Second order problem is

(3.6¢)
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CE(0)-EW+2GE (0)-2F (W +GF' ()
E'(1,G.C)=| +(1+ CE () +2F ) +F (»]
£ (0)=0,F(0)=0
(3.7¢)
Its solution is
cos y+4ycos y+2y> cosy—cosycos2y—2sin y
+2cos2ysiny+2ycos2ysiny—2cosysin2y
—2ycos ysin2y—sin ysin2y+2cos y C,
+8ycos yC,+4y*cos yC, —2cos ycos2yC,
—4sin y C, +4cos2ysin yC, +4ycos2ysin yC,
1| —4cosysin2yC, —4ycosysin2yC

£(:G.G) " 4| —2sin ysin2y C, +cos yC} +4ycos y C;?
+2y* cos yC> —cos ycos2y C> —2sin y C
+2cos2ysiny C;> +2ycos2ysin y C,>
~2cos ysin 2y C;> -2y cos ysin 2y C,
—sin ysin2y C> +4ycos yC, —2sin y C,

+2cos2ysinyC, —2cos ysin2yC,

(3.8¢)
Third order problem is
CE () +GEW) - F () +2CF(y)

, +2C,F ()= 2F (0 + G ()
F, (ysclsczscs): " ' "
+CF DA+ CIIF, () +2F, (0 +F, (1),

F(0)=0,F (0)=0
(3.9¢)

Its solution is
C,F,(y)[—cos y—2ycosy+2cos’ y—cosycos2y
+sin y—2ysin y+2cos” ysin y—cos2ysin y
+2sin” y —sin ysin 2y]+C,C,F,(y)[~cos y—2ycos y
+2cos” y—cos ycos2y +sin y—2ysin y+2cos’ ysin y
—cos2ysin y+2sin’ y —sin ysin 2y]+ C,F, (»)[~2cos y
+2cos” y+2sin® y]+ F (y)[-cos y—2ycos y+2cos’ y
Fs(y,Cl,Cz,CB)zé —cosyc0.52y+siI'1y2—2y§inyjk2cos2ysiny

—cos2ysin y+2sin” y—sin ysin2y]+ C,F (y)[-2cos y
—4ycos y+4cos’ y+2cos ycos2y+2siny—4ysin y
+4cos® ysin y—2cos2ysin y+4sin’ y —2sin ysin 2y]
+CF,(y)[-cos y—2ycosy+2cos” y—cos ycos2y
+sin y—2ysin y+2cos” ysin y —cos 2ysin y +2sin” y

—sin ysin 2y]+C, F,(y)[-2cos y+2cos >y +2sin’ y]

(3.10¢) We use equations (3.4c), (3.6¢),

(3.8¢) and (3.10c) we get third order approximate OHAM solution for # =1
F(y,C,G,C)=F(»+FK0,C)+E(.C,C)+F(.C,C,C)
(3.11c)
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=0,b=1

Using the OHAM technique of section mentioned above on domain ¢ we use the residual R that is

R=F"(0)+2F' (N +F(») (3.12¢)

We have obtained the following values of GGG
C, =-0.6157891011374226,C, =—1.648024704278988,

C, =-0.48317914168990783 (3.13¢c)

. where

From the above values of & we get the following approximate solution
F(y)=1-0.424995 y” —0.161002 )* (3.14¢)
The following table 3.4 displays values of the exact solution (3.2c), OHAM solution (3.14c¢) and Error of

OHAM. We compare the two solutions there exists similarity approximations between them also the values of HPM,
HAM along with their errors are considered and the comparison is established between the errors of OHAM, HPM
and HAM the errors of the technique, OHAM are smaller than the other two. All the mentioned values are described
in the following table 3.2, their graphs are drawn in figure 3.2 below.

Figure 3.2
y Exact sol OHAM sol HPM sol HAM sol Er OHAM |Er HPM |Er HAM
0.0 1.000000 1.000000 1.000000 1.000000 0.0 E-0 0.0 E-0 0.0 E-0
0.1 0.995321 0.99591 0.995338 0.995562 59E-4 1.6 E-5 2.4 E-4
0.2 0.982477 0.984288 0.982733 0.983077 1.8 E-3 2.5E-5 59E-4
0.3 0.963064 0.966098 0.964338 0.963763 3.0E-3 1.2 E-3 6.9 E-4
0.4 0.938448 0.942305 0.9424 0.938806 3.8E-3 39E-3 3.5E-4
0.5 0.909796 0.923877 0.919271 0.90935 4.0 E-3 94 E-3 44 E-4
0.6 0.878099 0.881778 0.8974 0.876489 3.6 E-3 1.9 E-2 1.6 E-3
0.7 0.844195 0.846976 0.879337 0.841258 2.7E-3 35E-2 29E-3
0.8 0.808792 0.810436 0.867733 0.804626 1.6 E-3 5.8 E-2 4.1 E-3
0.9 0,772482 0.773125 0.865338 0.76749 6.4 E-4 9.2E-2 4.9 E-3
1.0 0.735759 0.736007 0.875 0.73066 2.4 E-4 1.3 E-1 5.0 E-3

‘ 0]2 T O,Ll T 0,‘6 T 0,‘8 ) A ojz T 04 06 08 30
(a) Graph of exact and OHAM solutions (c) Graph of exact and HAM solutions
Figure 3.2

From the Figure 3.2(a) We conclude that the two
graphs are coincident and also from the above Table
3.2 We investigate that the OHAM solution and exact
solution are in very good agreement on domain

a=0,b=1 showing that the method is effective. Solid
curve = exact solution Dotted curve= OHAM solution,
HPM solution and HAM solution. From figure 3.2(b)
the HPM and exact solutions are not coincident again
the HAM and exact solutions are coincident as shown

o2 o4 os 08 M in figure 3.2(c), However generally the OHAM errors
(b) Graph of exact and HPM solution
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are smaller and there exists accuracy in the values of
OHAM and the method is reliable and effective.

Problem 3.3: [third order linear]
F"(»)+F(»)~(7-y")cos y=(y* =6y ~1)siny =0,
F(0)=0,F'(0)=—1,F'(1) = 2sin(1) (3.1d)

The exact solution of the problem is F(y)=("-1siny

Applying the technique of OHAM that is described in the above section. The Zeroth order problem is

m

E"(%)=0.F,0)=0,F (0)=-1,F (1) = 2sin(}) (3.3d)

Its solution is

1 ) :
F,(») =5(—2y+y (1+2sin(1))) (3.4d)

First order problem is

E’”(yscl):{

Its solution is

C,[-7cos y+ )’ cos y+sin y+6ysin y— siny+FO(y)]]
+(1+C)F," (»),F(0)=0,F (0)=0,F'(1)=0

(3.5d)

—~3120-240y +135y* —10y* +2y° — 4807 cos(1)
F(,C)= KIOCI +3120cos y —240y” cos y + 950" sin(1) + 4y’ sin(1)
+240sin y +1440ysin y — 240y sin y

(3.6d)

Second order problem is

C,[-7cos y+y* cosy+siny+6ysin y—y’siny
E'(3,C.C)=| +F,(»)+F, ()]+CE()+1+C)E" (),
F(0)=0,F'(0)=0,F (1)=0

Its solution is

1

Fz(y,CuCz)Zm

(3.7d)

C,[-52416-40320y +22680y* —1680y* +336y°
~80640y” cos(1) + 524160 cos y —40320y° cos y
+159600” sin(1) + 672" sin(1) + 40320sin y
+241920ysin y —40320)” sin y]+ C*[-1048320
+1209600y —468801y° —87360y° —3360y*
+714y° —8y7 + y* + 4468807 cos(1) —1344° cos(1)
+1048320cos y + 483840y cos y — 80640y cos y
+475502y7 sin(1)+3332y° sin(1) + 2 * sin(1)
—1693440sin y + 483840y sin ]+ C,[-524160
—40320y + 22680y —1680y* +336y°~80640y° cos(1)
+524160 cos y —40320y° cos y +159600y° sin(1)
+672y° sin(1) +40320sin y + 241920y sin y
—40320y” sin y]

(3.8d)

For V€101l we consider the following linear
differential equation

(3.2d)

C,[~7cos y+y” cos y+sin y+6ysin y— y”sin y
F'(3,C.C,.Cy) =| +F,(»)+ F, ()] + CIE(0) +F" (0)]+ CF(»)

+(1+C)F,

Third order problem is

(1. F(0)=0,F (0)=0,F (1)=0

(3.9d)
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Its solution is obtained by using the method, OHAM. The optimal values of the auxiliary constants

GGG are

obtained by using Galerkin’s method or least square method, using these values we get the series solution.

F(,C,G.C)

1

159667200

C,[-2075673600—159667200y
+89812800y” — 6652800y*
+1330560y° —319334400y°
cos(1)+2075673600cos y
—159667200y" cos y + 632016000 *
sin(1) +2661120y° sin(1) + 159667200
sin y +958003200y sin y —159667200 >
sin y]+ C,*[-8302694400 + 9580032000
—3712903920" — 691891200y
—26611200y* +5654880y° — 63360y’
+7920y* +3539289600y7 cos(1)
~10644480y° cos(1) + 8302694400 cos y
+3832012800y cos y — 638668800 cos y
+3765975840y” sin(1) + 26389440 °
sin(1) +15840y* sin(1) —13412044800
sin y +3832012800y sin y]+ C,’[8302694400
+14689382400y — 6081277257 y°
—1037836800y° +186278400y*
—28113426y° —2882880y° — 95040y
+12375y° —44y" + 4y" +7443992160y°
cos(1)+24171840y"° cos(1) —15840y* cos(1)
—8302694400cos y+ 5748019200y cos y
—319334400y° cos y — 1867972634
sin(1) +44577852y° sin(1) + 47190,
sin(1) + 8" sin(1) —20437401600sin y
+319334400y sin y]+ C,[-2075673600
+89812800y” — 6652800y +1330560y°
—319334400y° cos(1) +2075673600cos y
~159667200y" cos y + 632016000 sin(1)
+2661120y° sin(1)+159667200sin y
4958003200y sin y —159667200y7 sin y]
+C,C,[-8302694400 + 9580032000y
—3712903920y" — 691891200y
—26611200y* +565880y° — 63360y’
+7920y* +3539289600y7 cos(1)
~10644480y”° cos(1) + 8302694400 cos y
+3832012800y cos y — 638668800
cos y +3765975840y" sin(1) + 26389440y°
sin(1) +15840y* sin(1) —13412044800sin y
+3822012800y sin y]+C,[-2075673600
~159667200y +89812800y° — 6652800y *
+1330560y° —319334400y> cos(1)
+2075673600cos y +159667200y° cos y
4632016000y sin(1) +2661120y° sin(1)
+159667200sin y +958003200y sin y
~159667200y" sin y]

(3.10d)
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Now we use equations (3.4d), (3.6d), (3.8d) and (3.10d) to get third order approximate solution by OHAM for
P=1 that is
F(»,C,G,C)=F(M+FK0,.C)+E(.C,C)+F(1,C,C,C)

Using the proposed technique of section described above on the domain

R=F"(y)+ F(y)~(7-y*)cos y—(y* ~6y—Dsiny
The following values of C'S are found

C, =1.062670102836802, C, =-2.208103637790291,
C, =0.33369993779942651

We use the above values of

C]’C29C3

(3.11d)

(3.12d)

, the approximate solution is

a=0,b=1 we use the residual

F(y)=—y+0.0000488077y" +1.16623y" —0.173884°

~0.00092637y° +0.00852856 +0.000200624 *

—0.000245363y° —1.12908 x10™° '° +4.06776 x10™° "'
-3.01577x107° »'* —4.10508x107* y* +1.67752x107'* '

+2.89409x107'° " + O('*)
The following table 6.5 displays values of OHAM solution, exact solution and error

(3.13d)

Table 3.3

Y | Exact sol OHAM sol HPM sol HAM sol Er OHAM |Er HPM Er HAM
0.0 10.000000 0.000000 0.000000 0.000000 0.0 E-0 0.0E-0 0.0 E-0
0.1 |-.0988351 -0.0886448 -0.0988249 -0.0988314 1.9E-4 1.0 E-5 3.6 E-6
0.2 [-0.190723 -0.190034 -0.190682 -0.19071 6.8 E-4 4.0E-5 1.2 E-5
0.3 [-0.268923 -0.267535 -0.268833 -0.268899 1.3 E-3 9.0E-5 24E-5
0.4 [-0.327111 -0.32492 -0.326954 -0.327074 2.1E-3 1.5E-4 3.7E-5
0.5 [-0.359569 -0.357602 -0.35933 -0.35952 3.0E-3 23 E-4 49E-5
0.6 |-0.361371 -0.357602 -0.361042 -0.36131 3.7E-3 32E4 6.0 E-5
0.7 |-0.328551 -0.324145 -0.328131 -0.32848 44E-3 42 E-4 7.1E-5
0.8 [-0.258248 -0.253368 -0.257746 -0.258169 4.8 E-3 5.0E-4 7.9E-5
0.9 [-0.148832 -0.143667 -0.148271 -0.148747 5.1E-3 5.6 E4 8.4 E-5
1.0 10.000000 0.0052575 0.00058439 0.0000869 52 E-3 5.8E-4 8.6 E-5

Also in the above Table 3.3 the values of HPM 02 04 06 0s ¥o
and HAM solutions along with their errors are 005 /
displayed and we conclude that the errors of o10f J
technique, OHAM are smaller than HPM and HAM o1sF ,/
solutions. From the above table 3.3 we conclude that oz0l /

OHAM and exact solutions are in best agreement and

the values of the two columns are nearly equal.
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Figure 3.3
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In figure 3.3(a), (b) and (c) we investigate that

the graphs of OHAM, HPM and HAM are coincident
with the Graphs of their exact solutions, but generally
we conclude that the technique, OHAM is more
effective than the other two. From the above figure 3.3
we investigate that two graphs that is exact and
OHAM solution graphs are coincident, this shows that
the method OHAM is effective and reliable. Solid
curve= exact solution, Dotted curve= OHAM solution,
HPM solution and HAM solution.
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