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Queueing theory is considered to be a branch 
of operations research. It constitutes a powerful tool in 
modelling and performance analysis of many complex 
systems, such as computer networks, 
telecommunication systems, call centres, flexible 
manufacturing systems and service systems. Recently, 
the queueing theory including queueing systems and 
networks arouses mathematicians’, engineers’ and 
economics interests. 

Queueing theory evolved originally out of an 
investigation of problems dealing with the design of 
telephone systems. Now, some 70 years later, we are 
witnessing a tremendous accumulation of theoretical 
results for “idealized” systems that apparently have 
not been as effective in dealing with other types of 
real-life problems. Queueing theory differs from other 
mathematical techniques of Operations Research in 
that it does not deal with optimization models. Rather, 
it utilizes mathematical analysis to determine the 
system's measures of effectiveness such as the 
expected waiting time per customer and the facility's 
percentage of idle time. These measures are then used 
as data in the context of an optimization (cost) model 
for determining the system's capacity. The obstacles in 
applying queueing theory to practical problems occur 
both in modeling the system mathematically and in 
determining its optimum design parameters. This 
paper identifies the areas of application in terms of 
their amenability to analysis by queueing theory, and 
provides suggestions that can enhance the 
applicability of queueing models in real life. 

A stochastic process is a family of random 
variables X where t is a parameter running over a 
suitable index set T. (Where convenient, we will write 
X(t) instead of X,.) In a common situation, the index t 
corresponds to discrete units of time, and the index set 
is T = {0, 1, 2, . . .}. In this case, X, might represent 
the outcomes at successive tosses of a coin, repeated 
responses of a subject in a learning experiment, or 
successive observations of some characteristics of a 
certain population. Stochastic processes for which T = 

[0, c) are particularly important in applications. Here t 
often represents time, but different situations also 
frequently arise. For example, t may represent 
distance from an arbitrary origin, and X, may count 
the number of defects in the interval (0, t] along a 
thread, or the number of cars in the interval (0, t] 
along a highway. Stochastic processes are 
distinguished by their state space, or the range of 
possible values for the random variables X by their 
index set T, and by the dependence relations among 
the random variables X,.  
Events and Probabilities 

Let A and B be events. The event that at least 
one of A or B occurs is called the union of A and B 
and is written A U B; the event that both occur is 
called the intersection of A and B and is written 

A B , or simply AB. This notation extends to finite 

and countable sequences of events. Given events 

1 2, , .....,A A  the event that at least one occurs is 

written 1 2 1... i iA A A    the event that all 

occur is written 1 2 1... i iA A A    The 

probability of an event A is written  rP A . The 

certain event, denoted by  , always occurs, and 

  1rP   . The impossible event, denoted by , 

never occurs, and   0rP   . It is always the case 

that  0 1rP A   for any event A. 

Events A, B are said to be disjoint if 

A B  ; that is, if A and B cannot both occur. 

For disjoint events A, B we have the addition law 

     r r rP A B P A P B  . A stronger form 

of the addition law is as follows: Let 1 2, , .....,A A be 

events with iA ; and jA ; disjoint whenever i j . 



Academia Arena 2013;5(3)                                                                http://www.sciencepub.net/academia  

 

50 
 

Then  
11

r i r i
ii

P A P A




 
 

 
 . The addition law 

leads directly to the law of total probability: 
Random Variables 

Most of the time we adhere to the convention 
of using capital letters such as X, Y, Z to denote 
random variables, and lowercase letters such as x, y, z 
for real numbers. The expression (X:5 x) is the event 
that the random variable X assumes a value that is less 
than or equal to the real number x. This event may or 
may not occur, depending on the outcome of the 
experiment or phenomenon that determines the value 
for the random variable X. The probability that the 
event occurs is written Pr{X <- x). Allowing x to vary, 
this probability defines a function 
    

     ,rF x P X x x       

called the distribution function of the random variable 
X. 
Exponential, Moments and Poisson Probability 
Distributions: 

The mean (or the expectation) of a discrete 
random variable is defined by 

   E X nP x   

Equivalently, the mean of a continuous 
random variable is defined by 

   E X x f x dx




   

The exponential distribution with parameter 

  is given by 
te  

for 0t  . If T is a random 
variable that represents interarrival times with the 
exponential distribution, then 

   1 t tP T t e and P T t e       . 

This distribution lends itself well to modeling 
customer interarrival times or service times for a 
number of reasons. The first is the fact that the 
exponential function is a strictly decreasing function 
of t. This means that after an arrival has occurred, the 
amount of waiting time until the next arrival is more 
likely to be small than large. Another important 
property of the exponential distribution is what is 
known as the no-memory property. The no-memory 
property suggests that the time until the next arrival 
will never depend on how much time has already 
passed. This makes intuitive sense for a model where 
we’re measuring customer arrivals because the 

customers’ actions are clearly independent of one 
another. 
The Input Process:  

To begin modeling the input process, we 
define ti as the time when the ith customer arrives. For 

all 1i  , we define Ti = ti+1 −ti to be the ith 
interarrival time. We also assume that all Ti’s are 
independent, continuous random variables, which we 
represent by the random variable A with probability 
density a(t). Typically, A is chosen to have an 

exponential probability distribution with parameter   
defined as the arrival rate, that is to say, 

  ta t e   . 

The Output Process: 
Much like the input process, we start analysis 

of the output process by assuming that service times 
of different customers are independent random 
variables represented by the random variable S with 
probability density s(t) = μe−μt . We also define μ as 
the service rate, with units of customers per hour. 
Ideally, the output process can also be modeled as an 
exponential random variable, as it makes calculation 
much simpler. 
Birth-Death Processes:  

We define the number of people located in a 
queuing system, either waiting in line or in service, to 
be the state of the system at time t. At t = 0, the state 
of the system is going to be equal to the number of 
people initially in the system. The initial state of the 
system is noteworthy because it clearly affects the 
state at some future t. Knowing this, we can define 
Pij(t) as the probability that the state at time t will be j, 
given that the state at t = 0 was i. For a large t, Pij (t) 
will actually become independent of i and approach a 

limit j .This limit is known as the steady-state of 

state j.  
Conclusion: This paper gives a general look at the 
queueing theory. Presented queueing With the 
knowledge of probability theory, input and output 
models, and birthdeath processes, it is possible to 
derive many different queuing models, including but 
not limited to the ones. 
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