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It will be another million years at least, before 

we understand the primes. 
Paul Erdos (1913-1996) 
TATEMENT OF INTENT 
If elected. I am willing to serve the IMU and the 

international mathematical community as president of 
the IMU. I am willing to take on the duties and 
responsibilities of this function. 

These include (but are not restricted to) working 
with the IMU’s Executive Committee on policy matters 
and its tasks related to organizing the 2014 ICM, 
fostering the development of mathematics, in 
particular in developing countries and among young 
people worldwide, representing the interests of our 
community in contacts with other international 
scientific bodies, and helping the IMU committees in 
their function. 

--IMU president Ingrid Daubechies— 
Satellite conference to ICM 2010 
Analytic and combinatorial number theory 

(August 29-September 3, ICM2010) is a conjecture. 
The sieve methods and circle method are outdated 
methods which cannot prove twin prime conjecture 
and Goldbach’s conjecture. The papers of 
Goldston-Pintz-Yildirim and Gree-Tao are based on 
the Hardy-Littlewood prime k-tuple conjecture (1923). 

But the Hardy-Littlewood prime k-tuple conjecture is 
false: 

(http://www.wbabin.net/math/xuan77.pdf) 
(http://vixra.org/pdf/1003.0234v1.pdf) 
The world mathematicians read Jiang’s book and 

papers. In 1998 Jiang disproved Riemann hypothesis. 
In 1996 Jiang prove Goldabch conjecture and twin 
prime conjecture. Using a new analytical tool Jiang 
invented the Jiang function. Jiang prove almost all 
prime problems in prime distribution. Jiang 
epoch-making works in ICM2002 which was a failure 
congress. China considers Jiang epoch-making works 
to be pseudoscience. Jiang negated ICM2006 Fields 
medal (Green and Tao theorem is false) to see. 

(http://www.wbabin.net/math/xuan39e.pdf), 
(http://www.vixra.org/pdf/0904.00001v1.pdf).  

There are no Jiang’s epoch-making works in 
ICM2010. It cannot represent the modern 
epoch-making works. For fostering the development of 
Jiang prime theory IMU is willing to take on the duty 
and responsibility of this function to see [new prime 
k-tuple theorems (1)-(20)] and [the new prime 
theorems (1)-(1390)]: 
(http//www.wbabin.net/xuan.htm#chun-xuan) 
(http://vixra.org/numth/).  
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Abstract: We define that prime equations 

1 1 1( , , ), , ( , )n k nf P P f P P  
              （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are all prime. If Jiang’s 

function 1( ) 0nJ  
 then （5）has finite prime solutions. If 1( ) 0nJ  

 then there are infinitely many primes 

1, , nP P
 such that 1, kf f

 are  primes. We obtain a unite prime formula in prime distribution 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. 
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough 
to be useful. 

 
Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every 

reason to believe that there are some mysteries which the human mind will never penetrate. 
Leonhard Euler 
It will be another million years, at least, before we understand the primes. 
Paul Erdös 
 
Suppose that Euler totient function 

2
( ) ( 1)

P
P 


    

 as    ，            （1） 

where 2 P
P


 

 is called primorial. 

Suppose that
( , ) 1ih 

, where 
1, , ( )i   

. We have prime equations 

1 ( ) ( )1, ,P n P n h       
                 （2） 

where 0,1, 2,n   . 
（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. We 

have 

(mod )

( )
1 (1 (1)).

( )i

i

i i

h
P N

P h

N
o






 


  
,                （3） 

where ih
denotes the number of primes iP N

 in i iP n h 
 

0,1, 2,n  
, 

( )N
 the number of 

primes less than or equal to N . 
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in 

prime distribution. 

Let 30   and (30) 8  . From (2) we have eight prime equations 

1 30 1P n 
, 2 30 7P n 

, 3 30 11P n 
, 4 30 13P n 

, 5 30 17P n 
, 

6 30 19P n 
, 7 30 23P n 

, 8 30 29P n 
, 0,1, 2,n             （4） 

Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

1 1 1( , , ), , ( , , )n k nf P P f P P  
                        （5） 
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are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are primes. If Jiang’s 

function 
0)(1  nJ

 then (5) has finite prime solutions. If 
0)(1  nJ

 then there exist infinitely many 

primes 1, , nP P
 such that each kf  is a prime. 

PROOF. Firstly, we have Jiang’s function [1-11] 

1
3

( ) [( 1) ( )]n
n

P
J P P 


   

,                     （6） 

where ( )P  is called sieve constant and denotes the number of solutions for the following congruence 

1
1

( , , ) 0 (mod )
k

i n
i

f q q P

 

,                    （7） 

where 1 1, , 1, , 1, , 1nq P q P     
. 

1( )nJ   denotes the number of sets of 1, , nP P
 prime equations such that 

1 1 1( , , ), , ( , , )n k nf P P f P P  
 are prime equations. If 1( ) 0nJ  

 then (5) has finite prime solutions. If 

1( ) 0nJ  
 using ( )P  we sift out from (2) prime equations which can not be represented 1, , nP P

, then 

residual prime equations of (2) are 1, , nP P
 prime equations such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are  

prime equations. Therefore we prove that there exist infinitely many primes 1, , nP P
 such that 

1 1( , , ), ,nf P P 
 1( , , )k nf P P

 are primes. 
Secondly, we have the best asymptotic formula [2,3,4,6] 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

（8）is called a unite prime formula in prime distribution. Let 
1, 0n k 

, 2 ( ) ( )J   
. From (8) we 

have prime number theorem 

 1 1 1( , 2) : is prime (1 (1)).
log

N
N P N P o

N
    

.      （9） 
 
 
Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this 

old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because 
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by 
this theorem. 

Example 1. Twin primes 
, 2P P 

(300BC). 
From (6) and (7) we have Jiang’s function 

2
3

( ) ( 2) 0
P

J P


   
. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   is a prime equation. 

Therefore we prove that there are infinitely many primes P  such that 2P   is a prime. 

Let 30   and 2 (30) 3J 
. From (4) we have three P  prime equations 

3 5 830 11, 30 17, 30 29P n P n P n     
. 

From (8) we have the best asymptotic formula 
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  2
2 2 2

( )
( ,2) : 2 prime (1 (1))

( ) log

J N
N P N P o

N

 


 
    

 

2 23

1
2 1 (1 (1)).

( 1) logP

N
o

P N

 
    

   
In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J 
 denotes the number of P  prime equations, 

2 2
(1 (1))

( ) log

N
o

N



 


 the number of 

solutions of primes for every P  prime equation. 

Example 2. Even Goldbach’s conjecture 1 2N P P 
. Every even number 6N   is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

2
3

1
( ) ( 2) 0

2P P N

P
J P

P





    

 . 

Since 2 ( ) 0J  
 as N    in (2) exist infinitely many 1P

 prime equations such that 1N P
 is a 

prime equation. Therefore we prove that every even number 6N   is the sum of two primes. 
From (8) we have the best asymptotic formula 

  2
2 1 1 2 2

( )
( ,2) , prime (1 (1)).

( ) log

J N
N P N N P o

N

 


 
    

 

2 23

1 1
2 1 (1 (1))

( 1) 2 logP P N

P N
o

P P N

  
     

   . 
In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations , 2, 6P P P  . 
From (6) and (7) we have Jiang’s function 

2
5

( ) ( 3) 0
P

J P


   
, 

2 ( )J 
 is denotes the number of P  prime equations such that 2P   and 6P   are  prime equations. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   and 6P   are  prime 

equations. Therefore  we prove that there are infinitely many primes P  such that 2P   and 6P   are  
primes. 

Let 230, (30) 2J  
. From (4) we have two P  prime equations 

3 530 11, 30 17P n P n   
. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(
primes}are6,2:{)2,(

33

2
2

3 o
N

NJ
PPNPN 






 

Example 4. Odd Goldbach’s conjecture 1 2 3N P P P  
. Every odd number 9N   is the sum of three primes. 

From (6) and (7) we have Jiang’s function 

 2
3 23

1
( ) 3 3) 1 0

3 3P P N
J P P

P P




 
       

   . 

Since 3( ) 0J  
 as N    in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 

1 2N P P 
 is a prime equation. Therefore we prove that every odd number 9N   is the sum of three primes. 
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From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : prime (1 (1))

2 ( ) log

J N
N P P N N P P o

N

 


 
     

. 
2

3 3 33

1 1
1 1 (1 (1))

( 1) 3 3 logP P N

N
o

P P P N

   
        

     . 

Example 5. Prime equation 3 1 2 2P PP 
. 

From (6) and (7) we have Jiang’s function 

 2
3

3
( ) 3 2 0

P
J P P


    

 

3 ( )J 
 denotes the number of pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. 

Since 3( ) 0J  
 in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : 2 prime (1 (1)).

4 ( ) log

J N
N P P N PP o

N

 


 
    

 

Note. deg 1 2( ) 2PP 
. 

Example 6 [12].  Prime equation 
3 3

3 1 22P P P 
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
, 

where ( ) 3( 1)P P    if 

1

32 1(mod )
P

P


 ; ( ) 0P   if 

1

32 1(mod )
P

P


 ; ( ) 1P P    
otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a 

prime equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 

)).1(1(
log)(6

)(
prime}2:,{)3,(

3

2

3

33
2

3
1212 o

N

NJ
PPNPPN 






 

Example 7 [13].  Prime equation 
4 2

3 1 2( 1)P P P  
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
 

where ( ) 2( 1)P P    if 1(mod 4)P  ; ( ) 2( 3)P P    if 1(mod8)P  ; ( ) 0P   
otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a 

prime equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 
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 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

8 ( ) log

J N
N P P N P o

N

 


 
   

 
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of 

length k . 

1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d       
.    （10） 

From (8) we have the best asymptotic formula 

primes}are)1(,,,:{)2,( 11112 dkPdPPNPN  
 

1
2 ( )

(1 (1)).
( ) log

k

k k

J N
o

N

 

 



 
. 

If 2 ( ) 0J  
 then (10) has finite prime solutions. If 2 ( ) 0J  

 then there are infinitely many primes 1P
 

such that  2 , , kP P
 are  primes. 

To eliminate d  from (10) we have 

3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k       
. 

From (6) and (7) we have Jiang’s function 

3
3

( ) ( 1) ( 1)( 1) 0
P k k P

J P P P k
  

       
 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 

3, , kP P
 are prime equations. Therefore we prove that there are infinitely many pairs of primes 1P

 and 2P
 

such that 3, , kP P
 are primes. 

From (8) we have the best asymptotic formula 

 1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j k        
 

2 2
3( )

(1 (1))
2 ( ) log

k

k k

J N
o

N

 

 



 
     

2 2 2

1 12

1 ( 1)
(1 (1))

2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N
o

P P N

 

   

 
   

  . 

Example 9. It is a well-known conjecture that one of 
2, 2, 2P P P   is always divisible by 3. To generalize 

above to the k  primes, we prove the following conjectures. Let n  be a square-free even number. 

1. 
2, ,P P n P n  , 

where 
3 ( 1)n 

. 

From (6) and (7) we have 2 (3) 0J 
, hence one of 

2, ,P P n P n 
 is always divisible by 3. 

2. 
2 4, , , ,P P n P n P n  

, 

where 
5 ( ), 2,3.n b b 

 

From (6) and (7) we have 2 (5) 0J 
, hence one of 

2 4, , , ,P P n P n P n    is always divisible by 5. 

3. 
2 6, , , ,P P n P n P n   , 

where 
7 ( ), 2, 4.n b b 

 

From (6) and (7) we have 2 (7) 0J 
, hence one of 

2 6, , , ,P P n P n P n  
 is always divisible by 7. 

4. 
2 10, , , ,P P n P n P n  

, 
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where 
11 ( ), 3,4,5,9.n b b 

 

From (6) and (7) we have 2 (11) 0J 
, hence one of 

2 10, , , ,P P n P n P n  
 is always divisible by 

11. 

5. 
2 12, , , ,P P n P n P n  

, 

where 
13 ( ), 2,6,7,11.n b b 

 

From (6) and (7) we have 2 (13) 0J 
, hence one of 

2 12, , , ,P P n P n P n  
 is always divisible by 

13. 

6. 
2 16, , , ,P P n P n P n  

, 

where 
17 ( ), 3,5,6,7,10,11,12,14,15.n b b 

 

From (6) and (7) we have 2 (17) 0J 
, hence one of 

2 16, , , ,P P n P n P n    is always divisible by 
17. 

7. 
2 18, , , ,P P n P n P n   , 

where 
19 ( ), 4,5,6,9,16.17.n b b 

 

From (6) and (7) we have 2 (19) 0J 
, hence one of 

2 18, , , ,P P n P n P n  
 is always divisible by 

19. 

Example 10. Let n  be an even number. 

1. , , 1,3,5, ,2 1iP P n i k   , 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such 

that , iP P n  are  primes for any k . 

2. , , 2, 4,6, , 2iP P n i k   . 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such 

that , iP P n  are  primes for any k . 

Example 11. Prime equation 2 1 32P P P 
 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 3 2) 0
P

J P P


    
. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is 

prime equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

2 ( ) log

J N
N P P N P o

N

 


 
   

 
 

In the same way we can prove 
2

2 3 12P P P 
 

which has the same Jiang’s function. 
Jiang’s function is accurate sieve function. Using 

it we can prove any irreducible prime equations in 
prime distribution. There are infinitely many twin 

primes but we do not have rigorous proof of this old 
conjecture by any method [20]. As strong as the 
numerical evidence may be, we still do not even know 
whether there are infinitely many pairs of twin primes 
[21]. All the prime theorems are conjectures except the 
prime number theorem, because they do not prove the 
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simplest twin primes. They conjecture that the prime 
distribution is randomness [12-26], because they do not 
understand theory of prime numbers. 
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Abstract: Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime 

k -tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple 
conjecture. 

 

(A) Jiang prime k -tuple theorem [1, 2]. 

We define the prime k -tuple equation 

, ip p n
,                        （1） 

where 
2 , 1, 1in i k 

. 
we have Jiang function [1, 2] 

2 ( ) ( 1 ( ))
P

J P P    
,                  （2） 

where P
P  

, 
( )P

 is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

, 
1, , 1q p 

.                  （3） 

If ( ) 1P P    then 2 ( ) 0J  
. There exist infinitely many primes P  such that each of iP n

 is 

prime. If 
( ) 1P P  

 then 2 ( ) 0J  
. There exist finitely many primes P  such that each of iP n

 is 

prime. 2 ( )J 
 is a subset of Euler function 

( ) 
[2]. 

If 2 ( ) 0J  
, then we hae the best asymptotic formula of the number of prime P [1, 2] 

 
1

2 ( )
( ,2) : ~ ( )

( ) log log

k

k i k k k

J N N
N P N P n prime C k

N N

 


 



    
   （4） 

( ) ( 1)
P

P    
， 

1 ( ) 1
( ) 1 1

k

P

P
C k

P P




  
     

                                    （5） 

Example 1. Let 2, , 2k P P  , twin primes theorem. 
From (3) we have 

(2) 0, ( ) 1P  
 if 2P  ,                （6） 

Substituting (6) into (2) we have 

2
3

( ) ( 2) 0
P

J P


   
                        （7） 

There exist infinitely many primes P  such that 2P   is prime. Substituting (7) into (4) we have the best 
asymptotic pormula 

  2 23

1
( ,2) : 2 ~ 2 (1 ) .

( 1) log
k

P

N
N P N P prime

P N



     

   （8） 

Example 2. Let 3, , 2, 4k P P P   . 
From (3) we have 

(2) 0, (3) 2  
                    （9） 
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From (2) we have 

2 ( ) 0J  
.                        （10） 

It has only a solution 3P  , 2 5P   , 4 7P   . One of , 2, 4P P P   is always divisible by 3. 

Example 3. Let 
4, ,k P P n 

, where 
2,6,8n 

. 
From (3) we have 

(2) 0, (3) 1, ( ) 3P      if 3P  .              （11） 
Substituting (11) into (2) we have 

2
5

( ) ( 4) 0
P

J P


   
,                          （12） 

There exist infinitely many primes P  such that each of P n  is prime. 
Substituting (12) into (4) we have the best asymptotic formula 

 
3

4 4 45

27 ( 4)
( ,2) : ~

3 ( 1) logP

P P N
N P N P n prime

P N





    

        （13） 

Example 4. Let 5k  , P , P n , where 
2,6,8,12n 

. 
From (3) we have 

(2) 0, (3) 1, (5) 3, ( ) 4P      
 if 5P           （14） 

Substituting (14) into (2) we have 

2
7

( ) ( 5) 0
P

J P


   
                         （15） 

There exist infinitely many primes P  such that each of P n  is prime. Substituting (15) into (4) we have 
the best asymptotic formula 

 
4 4

5 11 5 57

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （16） 

Example 5. Let 6k  ，P , P n , where 
2,6,8,12,14n 

. 
From (3) and (2) we have 

2(2) 0, (3) 1, (5) 4, (5) 0J     
         （17） 

It has only a  solution 5P  , 2 7P   , 6 11P   , 8 13P   , 12 17P   , 14 19P   . One 

of P n  is always divisible by 5. 

（B）The Hardy-Littlewood prime k -tuple conjecture[3-14]. 
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999). 

We define the prime k -tuple equation 

, iP P n
                             （18） 

where 
2 , 1, , 1in i k 

. 
In 1923 Hardy and Littlewood conjectured the asymptotic formula 

 ( ,2) : ~ ( )
log

k i k

N
N P N P n prime H k

N
    

,            （19） 
where 

( ) 1
( ) 1 1

k

P

P
H k

P P




  
     

                    （20） 

( )P  is the number of solutions of congruence 
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1

1
( ) 0 (mod )

k

i
i

q n P



  

，  
1, ,q P 

.             （21） 

From (21) we have 
( )P P 

 and 
( ) 0H k 

. For any prime k -tuple equation there exist infinitely many 

primes P  such that each of iP n
 is prime, which is false. 

Conjectore 1. Let 2, , 2k P P  , twin primes theorem 
Frome (21) we have 

( ) 1P                       （22） 
Substituting (22) into (20) we have 

(2)
1P

P
H

P
 

                  （23） 
Substituting (23) into (19) we have the asymptotic formula 

 2 2
( ,2) : 2 ~

1 logP

P N
N P N P prime

P N
     

      （24） 
which is false see example 1. 

Conjecture 2. Let 3, , 2, 4k P P P   . 
From (21) we have 

(2) 1, ( ) 2P  
 if 2P                 （25） 

Substituting (25) into (20) we have 
2

33

( 2)
(3) 4

( 1)P

P P
H

P


 

                    （26） 
Substituting (26) into (19) we have asymptotic formula 

 
2

3 3 33

( 2)
( , 2) : 2 , 4 ~ 4

( 1) logP

P P N
N P N P prime P prim

P N





      

  （27） 
which is false see example 2. 

Conjecutre 3. Let 4k  , ,P P n , where 2,6,8n  . 
From (21) we have 

(2) 1, (3) 2, ( ) 3P    
 if 3P              （28） 

Substituting (28) into (20) we have 
3

43

27 ( 3)
(4)

2 ( 1)P

P P
H

P


 

                 （29） 
Substituting (29) into (19) we have asymptotic formula 

 
3

4 4 43

27 ( 3)
( ,2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （30） 
Which is false see example 3. 

Conjecture 4. Let 
5, ,k P P n 

, where 
2,6,8,12n 

 
From (21) we have 

(2) 1, (3) 2, (5) 3, ( ) 4P        if 5P               （31） 
Substituting (31) into (20) we have 

4 4

5 55

15 ( 4)
(5)

4 ( 1)P

P P
H

P


 

                 （32） 
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Substituting (32) into (19) we have asymptotic formula 

 
4 4

5 5 5 55

15 ( 4)
( , 2) : ~

4 ( 1) logP

P P N
N P N P n prime

P N





    

   （33） 
Which is false see example 4. 

Conjecutre 5. Let 6k  , P , P n , where 
2,6,8,12,14n 

. 
From (21) we have 

(2) 1, (3) 2, (5) 4, ( ) 5P        if 5P         （34） 
Substituting (34) into (20) we have 

5 5

13 65

15 ( 5)
(6)

2 ( 1)P

P P
H

P


 

                 （35） 
Substituting (35) into (19) we have asymptotic formula 

 
5 5

6 13 6 65

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

  （36） 
which is false see example 5. 
 

Conclusion. The Hardy-Littlewood prime k -tuple 
conjecture is false. The tool of addive prime number 
theory is basically the Hardy-Littlewood prime tuples 

conjecture. Jiang prime k -tuple theorem can replace 

Hardy-Littlewood prime k -tuple Conjecture. There 
cannot be really modern prime theory without Jiang 
function. 
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Abstract: In 1859 Riemann defined the zeta function 
( )s

. From Gamma function he derived the zeta function 

with Gamma function 
( )s

. 
( )s

 and 
( )s

are the two different functions. It is false that 
( )s

 replaces 

( )s . After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 

( )nJ 
 can replace RH. 

AMS  mathematics subject classification: Primary 11M26. 
In 1859 Riemann defined the Riemann zeta function (RZF)[1] 

1

1

1
( ) (1 )s

sP
n

s P
n




 



    
 ,       （1） 

where 
, 1s ti i   

，  and t  are real, P ranges over all primes. RZF is the function of the 

complex variable s  in 
0, 0t  

，which is absolutely convergent. 
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2] 

(1 ) 0ti  
.                   （2） 

In 1998 Jiang proved [3] 

( ) 0s 
,                       （3） 

where  0 1  . 
Riemann paper (1859) is false [1]  We define Gamma function [1, 2] 

1
2

02

s
ts

e t dt
 

 
  

 


.                  （4） 

For 0  . On setting 
2t n x , we observe that 

21
2 2

02

s s
s n xs

n x e dx
 

  
  

 


.            （5） 

Hence, with some care on exchanging summation and integration, for 1  , 

21
2 2

0
1

( )
2

s s
n x

n

s
s x e dx 

 




  
    

   


 
1

2

0

( ) 1

2

s x
x dx

   
  

 


,            （6） 

where 
( )s

 is called Riemann zeta function with gamma function rather than ( )s , 

2

( ) : n x

n

x e 






 
,                （7） 

is the Jacobi theta function. The functional equation for 
( )x

 is 
1

12 ( ) ( ),x x x  
                  （8） 

and is valid for 0x  . 

Finally, using the functional equation of 
( )x

, we obtain 
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12 1
2 2 2

1

1 ( ) 1
( ) ( ) ( ) .

( 1) 2

2

s
s s x

s x x dx
s s s

 


    
    

    
 



   （9） 
From (9) we obtain the functional equation 

1

2 2
1

( ) (1 )
2 2

s ss s
s s   


      

     
    .              （10） 

The function 
( )s

 satisfies the following 

1. 
( )s

 has no zero for 1  ; 

2. The only pole of 
( )s

 is at 1s  ; it has residue 1 and is simple; 

3. 
( )s

 has trivial zeros at 
2, 4, ...s   

 but 
( )s

 has no zeros; 

4. The nontrivial zeros lie inside the region 0 1   and are symmetric about both the vertical line 

1 / 2  . 

The strip 0 1   is called the critical strip and the vertical line 1 / 2   is called the critical line. 

Conjecture  (The Riemann Hypothesis). All nontrivial zeros of 
( )s

 lie on the critical line 1 / 2  , which is 
false. [3] 

( )s
 and 

( )s
 are the two different functions. It is false that 

( )s
 replaces 

( )s
, Pati proved that is 

not all complex zeros of 
( )s

 lie on the critical line: 1/ 2   [4]. 
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly 

related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang 

discovered Jiang function 
( )nJ 

 which can replace RH, Riemann zeta function and L-function in view of its 

proved feature: if 
( ) 0nJ  

 then the prime equation has infinitely many prime solutions; and if 
( ) 0nJ  

, 

then the prime equation has finitely many prime solutions. By using 
( )nJ 

 Jiang proves about 600 prime 
theorems including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in 
primes[7,8]. 

In the same way we have a general formula involving 
( )s

 

1 1

0 0
1 1

( ) ( )s s

n n

x F nx dx x F nx dx
  

 

 

  
 

1 1

0 0
1

1
( ) ( ) ( )s s

s
n

y F y dy s y F y dy
n


  

 



   
,       （11） 

where ( )F y  is arbitrary. 

From (11) we obtain many zeta functions 
( )s

 which are not directly related to the number theory. 
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly 

related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green 

and Tao prove that there exist infinitely many arithmetic progressions of length k  consisting only of primes which 
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves 
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions 
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT  which is 
Fermat’s marvelous proof[7, 13]. 
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Primes Represented by 1 2
n nP mP

[14] 

（1）Let 3n   and 2m  . We have 
3 3

3 1 22P P P 
. 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where 
( ) 2 1P P  

 if 

1

32 1
P

  (mod P ); 
( ) 2P P   

 if 

1

32 1
P

  (mod P ); 
( ) 1P 

 
otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
3 3

2 1 2 1 2 1 2 3( ,3) { , : , , 2 prime}N P P P P N P P P    
 

2 2 2
3

3 3 3 3
3

( ) 1 ( 3 3 ( ))
~

6 ( ) log 3 ( 1) logP

J N P P P P N

N P N

  

 

  


 


. 

where 2 P

P


 
 is called primorial, 2

( ) ( 1)
P

P


  
. 

It is the simplest theorem which is called the Heath-Brown problem [15]. 

（2）Let 0n P
 be an odd prime, 

2 m
 and 

0Pm b  . 
we have 

0 0

3 1 2
P PP P mP 

 
We have 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where ( ) 2P P     if 0 0; ( ) ( 1) 2P m P P P P    
 if 

0

1

1

P

Pm



  (mod P ); 

( ) 2P P   
 if 

0

1

1

P

Pm



 (mod P ); 
( ) 1P 

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have 
2

3
2 3 3

0

( )
( ,3) ~ .

2 ( ) log

J N
N

P N

 



  . 

The Polynomial 
2

1 2( 1)nP P 
 Captures Its Primes [14] 

（1）Let 4n  , We have 
4 2

3 1 2( 1)P P P  
, 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where 
( )P P 

 if 1P   (mod 4); 
( ) 4P P  

 if 1P  （mod 8）; 
( ) 2P P   

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
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4 2
2 1 2 1 2 1 2 3( ,3) { , : , , ( 1) prime}N P P P P N P P P     

 
2

3
3 3

( )
~

8 ( ) log

J N

N

 

 . 
It is the simplest theorem which is called Friedlander-Iwaniec problem [16]. 

（2）Let 4n m , We have 
4 2

3 1 2( 1)mP P P  
, 

where 
1, 2,3,m  

. 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
iP P

J P P P 
 

    
, 

where ( ) 4P P m    if 
8 ( 1) ; ( ) 4m P P P  

 if 
8 ( 1)P 

; ( )P P  if 
4 ( 1)P 

; 

( ) 2P P     otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is a prime. It is a 
generalization of Euler proof for the existence of infinitely many primes. 

We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3

( )

8 ( ) log

J N

m N

 

 . 

（3）Let 2n b .  We have 
2 2

3 1 2( 1)bP P P  
, 

where b  is an odd. 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where ( ) 2P P b    if 
4 ( 1); ( ) 2b P P P  

 if 
4 ( 1)P 

; ( ) 2P P     otherwise. 
We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3

( )

4 ( ) log

J N

b N

 

 . 

（4）Let 0n P
, We have 

0 2
3 1 2( 1)PP P P  

. 

where 0P
 is an odd. Prime. 

we have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where 0( ) 1P P  
 if 0 ( 1); ( ) 0P P P 

 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is also a prime. 
We have the best asymptotic formula 
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2 ( ,3) ~N

2
3

3 3
0

( )

2 ( ) log

J N

P N

 


. 

 

The Jiang function 
( )nJ 

 is closely related to 

the prime distribution. Using 
( )nJ 

 we are able to 
tackle almost all prime problems in the prime 
distributions. 
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Automorphic Functions And Fermat’s Last Theorem(1) 
 

Chun-Xuan Jiang 
 

P.O. Box 3924,Beijing 100854, China 
jiangchunxuan@vip.sohu.com 

 
Abstract: In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 
biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly 
marvelous proof, which this margin is too small to contain.” 

This means: ( 2)n n nx y z n    has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 3P  and P , where P  is an odd 
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prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving. 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

1
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

                        （1） 

where J  denotes a n th root of unity, 1nJ  , n  is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order n  with 1n   variables 

[1-7]. 
1

2
( 1)

1

1 ( 1)
2 ( 1) cos ( 1)j

n

BA i j j
i j

j

i j
S e e

n n










 
         

  


    （2） 

where i=1,2,…,n; 
1

1

n

A t






 
,      

1

1

( 1) cos
n

j
j

j
B t

n





 



 
, 

1
1

1

( 1) ( 1) sin
n

j j
j

j
t

n





 







  
,     

1

2

1

2 0

n

j
j

A B





 
             (3) 

(2) may be written in the matrix form 
 

1

2

3

2

1 1 0 0

( 1)
1 cos sin sin

2

2 2 ( 1)1
1 cos sin sin

( 1) ( 1) ( 1)
1 cos sin sin

2

n

nS
n n nS

n
S

n n nn

S
n n n

n n n

  

  

  

 
      

   
   
    
   
   
        

  








    


 

1

1

1

1

1 1

2 2

2 cos

2 sin

2exp sin

A

B

B

n n

e

e

e

B





 

 
 
 
 
 
 
 
  



(4) 

where ( 1) / 2n   is an even number. 
From (4) we have its inverse transformation 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n n

B
n n n

n n n

  


  


  

 

 
     
  
      
  
  
          
  








    


 

1

2

3

n

S

S

S

S

 
 
 
 
 
 
 
 



 (5) 
From (5) we have 

1

n
A

i
i

e S


 
,   

1

1 1
1

cos ( 1) cosj

n
B ij

j i
i

ij
e S S

n









  
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1
1

1
1

sin ( 1) ( 1) sinj

n
B j ij

j i
i

ij
e S

n










  
,                                 （6） 

In (3) and (6) it  and iS
 have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT. 

Using (4) and (5) in 1991 Jiang invented that every factor of exponent n  has the Fermat equation and proved FLT 
[1-7] Substituting (4) into (5) we prove (5). 

 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)1sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n nn

B
n n n

n n n

  


  


  

 

 
   
  
  
      
  
  
          
  








    


 

1

1

1

1

1 1
2

2 2

1 1 0 0

( 1)
1 cos sin sin

2 2 cos
2 2 ( 1) 2 sin1 cos sin sin

2exp( )sin( )
( 1) ( 1) ( 1)

1 cos sin sin
2

A

B

B

n n

en

n n n e
n e

n n n

B
n n n

n n n

  


   


  

 

 
        
   
      
   
   
        
  








    


 

1

1

1

1

1 1

2 2

0 0 0

0 0 0
2 2 cos

1 2 sin0 0 0
2

2exp( )sin( )

0 0 0
2

A

B

B

n n

n

en

e

n e
n

B
n





 

 
   
   
   
   

    
   
   
     
  








    


 

1

1

1

1

1 1

2 2

cos

sin

exp( )sin( )

A

B

B

n n

e

e

e

B





 

 
 
 
   
 
 
  



,                                          （7） 

where 

1
2

1

1 (cos )
2

n

j

j n

n





 
,   

1
2

1

(sin )
2

n

j

j n

n






. 
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From (3) we have 
1

2

1

exp( 2 ) 1

n

j
j

A B





 
.                           （8） 

From (6) we have 

1 2 1 1 1 1 11

2
2 1 3 2 2 1 2 1

1

1 1 1 1

( ) ( )

( ) ( )
exp( 2 )

( ) ( )

n nn

n

j
j

n n n n n n

S S S S S S

S S S S S S
A B

S S S S S S







 

  

 

 

       

 
,        （9） 

where   

( ) i
i j

j

S
S

t





[7]. 

From (8) and (9) we have the circulant determinant 

1 21

2
2 1 3

1

1 1

exp( 2 ) 1

nn

j
j

n n

S S S

S S S
A B

S S S







  





   


          （10） 

If 
0iS 

, where 
1,2, ,i n 

, then (10) has infinitely many rational solutions. 

Assume 1 0S 
, 2 0S 

, 
0iS 

 where 
3, 4, , . 0ii n S 

 are 2n   indeterminate equations with 

1n   variables. From (6) we have 

1 2
Ae S S 

, 

2 2 2
1 2 1 22 ( 1) cosjB j j

e S S S S
n


   

.        （11） 
From (10) and (11) we have the Fermat equation 

1 1
2 2

2 2
1 2 1 2 1 2 1 2

1
1

exp( 2 ) ( ) ( 2 ( 1) cos ) 1

n n

j n n
j

j
j

j
A B S S S S S S S S

n


 




         
 （12） 

Example[1]. Let 15n  . From (3) we have 

1 14 2 13 3 12 4 11 5 10 6 9 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t t t t             
 

1 1 14 2 13 3 12 4 11

2 3 4
( ) cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

5 6 7
( ) cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 

2 1 14 2 13 3 12 4 11

2 4 6 8
( )cos ( )cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

10 12 14
( )cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 

3 1 14 2 13 3 12 4 11

3 6 9 12
( )cos ( )cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

15 18 21
( ) cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 
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4 1 14 2 13 3 12 4 11

4 8 12 16
( ) cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

20 24 28
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

5 1 14 2 13 3 12 4 11

5 10 15 20
( ) cos ( )cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

25 30 35
( ) cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 

6 1 14 2 13 3 12 4 11

6 12 18 24
( ) cos ( ) cos ( )cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

30 36 42
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

7 1 14 2 13 3 12 4 11

7 14 21 28
( )cos ( )cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

35 42 49
( ) cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 
7

3 6 5 10
1

2 0, 2 2 5( )j
j

A B A B B t t


     
.                       (13) 

Form (12) we have the Fermat equation 
7

15 15 5 3 5 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1j
j

A B S S S S


     
.                   (14) 

From (13) we have 
5

3 6 5 10exp( 2 2 ) [exp( )]A B B t t   
.                 （15) 

From (11) we have 
5 5

3 6 1 2exp( 2 2 )A B B S S   
.                     (16) 

From (15) and (16) we have the Fermat equation 
5 5 5

3 6 1 2 5 10exp( 2 2 ) [exp( )]A B B S S t t     
.                  （17） 

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational 
solutions for exponent 5[1]. 

Theorem 1. [1-7]. Let 3n P ,where 3P   is odd prime. From (12) we have the Fermat’s equation 
3 1

3 3 3 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1
P

P P P P
j

j

A B S S S S




     
.                (18) 

From (3) we have 
1

2

3 2
1

exp( 2 ) [exp( )]

P

P
j P P

j

A B t t





  
.                     (19) 

From (11) we have 
1

2

3 1 2
1

exp( 2 )

P

P P
j

j

A B S S





  
.                        (20) 

From (19) and (20) we have the Fermat equation 
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1

2

3 1 2 2
1

exp( 2 ) [exp( )]

P

P P P
j P P

j

A B S S t t





    
.           （21) 

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational 

solutions for 3P   [1, 3-7]. 
Theorem 2. In 1847 Kummer write the Fermat’s equation 

P P Px y z 
                           （22) 

in the form 
2 1( )( )( ) ( )P Px y x ry x r y x r y z                          （23) 

where P  is odd prime, 

2 2
cos sinr i

P P

 
 

. 

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100 
[8].. 

We consider the Fermat’s equation 
3 3 3P P Px y z 

                        （24) 
we rewrite (24) 

3 3 3( ) ( ) ( )P P Px y z 
                      (25) 

From (24) we have 
2 3( )( )( )P P P P P P Px y x ry x r y z                  （26) 

where 

2 2
cos sin

3 3
r i

 
 

 

We assume the divisor of each factor is a P th power. 

Let 
1

x
S

z


, 
2

y
S

z


. From (20) and (26) we have the Fermat’s equation 

2[ exp( )]P P P
P Px y z t t   

                 (27) 
Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer 

solutions for prime exponent P . 
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24) 

3 3 3( ) ( ) ( )P P Px y z                    (28) 
Euler proved that（25）has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no integer 

solutions for all prime exponent P [1-7]. 
We consider Fermat equation 

4 4 4P P Px y z 
                    (29) 

We rewrite (29) 
4 4 4( ) (( ) ( )P P Px y z                  （30) 

4 4 4( ) ( ) ( )P P Px y z 
                 （31) 

 
Fermat proved that (30) has no integer solutions 

for exponent 4 [8]. Therefore we prove that (31) has no 

integer solutions for all prime exponent P  
[2,5,7].This is the proof that Fermat thought to have 
had. 

Remark. It suffices to prove FLT for exponent 4. Let 

4n P , where P  is an odd prime. We have the 

Fermat’s equation for exponent 4P  and the Fermat’s 

equation for exponent P [2,5,7]. This is the proof that 
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Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be n P  , 2n P   

and 4n P  . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be n P  , 2n P   

and 4n P  . Every factor of exponent n  has 
Fermat’s equation [1-7].Using modular elliptic curves 
Wiles and Taylor prove FLT[9,10].This is not the proof 
that Fermat thought to have had. The classical theory of 
automorphic functions, created by Klein and Poincare, 
was concerned with the study of analytic functions in 
the unit circle that are invariant under a discrete group 
of transformations. Automorphic functions are 
generalization of the trigonometric ,hyperbolic,elliptic, 
and certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Abstract: This paper explains the behavior of the entire universe from the smallest to the largest scales, found an 

equation that changed the universe: R
mcF

2


, established the expansion theory of the universe without dark 

matter and dark energy,and obtained the expansion acceleration: 

4

2e
ug

C R


 . It shows that gravity is 
action-at-a-distance and  that a gravitational wave is unobservable. Thus,a new universe model is suggested that the 
universe has a centre consisting of the tachyonic matter. 
 
Keywords: The universe equation; the universe expansion theory 

 
Introduction 

According to Jiang idea[1],in the Universe there are two kinds of matter: (1) observable subluminal matter 
called tardyons(locality) and (2) unobservable superluminal matter called tachyons(nonlocality). They coexist in 
motion. What are tachyons? Historically tachyons are described as particles which travel faster than light. 
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Describing tachyon as a particle with an imaginary mass is wrong[2]. In our theory[1] tachyon  has no rest time and 
no rest mass. It is unobservable. Tachyons can be converted into tardyons and vice versa. Tardyonic rotating motion 
produces the centrifugal force but tachyonic rotating motion produces the centripetal force which is force of gravity. 
Using the coexistence principle of tardyons and tachyons it follows that 

an equation that changed the universe: R
mcF

2


. We establish the expansion theory of a universe 
without dark matter and dark energy. We obtain the expansion acceleration: 

4

2e
ug

C R


. We unify the gravitational theory and particle theory and explain the behavior of the entire 
universe from the smallest to the largest scales. In this universe there are no quarks ， no Higgs particles ,and no 
black holes. The geometrization of all physical fields is a mathematical guess which has no basis in physical reality, 
because it does not consider and understand the tachyonic theory. It shows that gravity is action-at-a-distance and 
that a gravitational wave is unobservable.We suggest a new universe model that the universe has a centre consisting 
of the tachyonic matter. 

An equation that Changed the Universe: R
mcF

2


 
We first define two-dimensional space and time ring[1] 

,
ct x

z ct jx
x ct

 
   

                            （1） 

where x  and t  are the tardyonic space and time coordinates, c  is light velocity in vacuum, 











01

10
j

. 
(1) can be written in Euler form 

0 0 (ch sh ),jz ct e ct j    
                    （2） 

where 0ct
 is the tardyonic invariance, and   is the tardyonic hyperbolical angle. 

From (1) and (2) it follows 

,ch0 ctct 
  

sh0ctx 
                       （3） 

.)( 22
0 xctct 

                               （4） 
From (3) it follows 

.thth 11

c

u

ct

x  
                             （5） 

where uc   is the tardyonic velocity, 
2

1
ch

1 ( / )u c
 


 and 

2

/
sh

1 ( / )

u c

u c
 


. 

The z  denotes space-time of the tardyonic theory. 

Using the morphism jzzj : , it follows 

),sh(ch00  jxextjcxjz j 
             （6） 

where x  and t  are the tachyonic space and time coordinates, 0x
 is tachyonic invariance,   tachyonic 

hyperbolical angle. 
From (6) it follows 

.sh,ch 00  xtcxx 
                       （7） 

22
0 )()( tcxx 

.                              （8） 
From (7) it follows 
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.thth 11

u

c

x

tc  
                            （9） 

where cu   is the tachyonic velocity, 
2

1
ch

1 ( / )c u
 


 and 

2

/
sh

1 ( / )

c u

c u
 


. 

The jz  denotes space-time of the tachyonic theory. Both the z and the jz  form the entire world but the 
jz

 world is unexploited and unstudied. 

 
Fig. 1. Minkowskian spacetime diagram 

 

Figure 1 shows the formulas (1)-(9). jzzj :  shows  that a tardyon can be converted into a tachyon, but 
zjzj :  shows that a tachyon can be converted into a tardyon. cuu  0  is a tardyonic velocity, but 

cuu   is a tachyonic velocity, which coexist. At the x axis we define the tachyonic string length 

.constantlim
0

0 



tux

t
u

                            （10） 

where t is the rest time. 

Since at rest the tachyonic string time 0t  and u , it shows that the tachyon is a string which is 
unobservable. In the rest system the tachyonic string motion is an action-at-a distance motion. This simple thought 
made a deep impression on me. It impelled me toward the only string theory[1]. Other string theories all are guesses. 

Assume   , from (5) and (9) it follows that the tardyonic and tachyonic coexistence principle[1,3,4] 
2cuu    .                    

 （11） 
Differentiating (11) by the time, it follows 
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.
2

dt

du

u

c

dt

ud










                        （12） 

dt

du

 and dt

ud

 can coexist in motion, but their directions are opposite. 
We study the tardyonic and tachyonic rotating motions. The tardyonic rotation produces centripetal 

acceleration 

R

u

dt

du 2


,                            （13） 

where R  is rotating radius. 
Substituting (13) into (12) it follows that the tachyonic rotating produces centrifugal acceleration 

.
2

R

c

dt

ud


                          （14） 

It is independent of tachyonic velocity u  , only inversely proportional to radius R . 
(13) and (14) are dual formulas, which have the same form. It is unique and perfect. From (13) it follows the 

tardyonic centrifugal force 

,
2

R

Mu
F 

                         （15） 

where M  is the inertial mass. 
From (14) it follows the tachyonic centripetal force, that is gravity 

R

mc
F

2


,                         （16） 

where m  is the gravitational mass converted into by tachyonic mass m which is unobservable but m is 
observable. 

Whether 0u  or 0u , all matter produces gravity. (15) and (16) are dual formulas, which have the same 
form. (16) is a new gravitational formula called an equation that changed the universe. This simple thought made a 
deep impression on me. It impelled me toward a theory of gravitation. It has simplicity, elegance and mathematical 
beauty. It is the foundations of gravitational theory and cosmology. In the universe there are two main forces: the 
tardyonic centrifugal force (15) and tachyonic centripetal force (16) which make structure formation of the universe. 

Now we study the freely falling body. Tachyonic mass m  can be converted into tardyonic mass m , which 
acts on the freely falling body and produces the gravitational force 

R

mc
F

2


,                         （17） 

where R  is the Earth radius. 
We have the equation of motion 

Mg
R

mc


2

,                         （18） 

where 
g

 is gravitational acceleration, M  is mass of freely falling body. 
From (18) it follows the gravitational coefficient 

10

2
109.6 

c

Rg

M

m


.                    （19） 

Eötvös(1922) experiment 
9~ 5 10 

 and Dicke experiment 
11~ 10 

[5]. Since the gravitational mass 
m  can be transformed into the rest mass in freely falling body,  we define Einstein’s gravitational mass 
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mMM ig 
 and inertial mass 

MM i 
[6]. It follows 

ig MM 
.                            （20） 

Therefore it shows that the principle of equivalence is nonexistent. 
The expansion theory of the universe without dark matter and dark energy 

The Big Bang threw all the matter in the universe outwards. Both Newton’s and Einstein’s theories of gravity 
predict that the expansion must be slowing down to some degree: the mutual gravitational attraction of all the matter 
in all the galaxies should be pulling them inwards. But measurements of distant supernovae show just the 
opposite[7] . All the matter in the universe appears to be accelerating outwards. Its speed is picking up. There is no 
agreement yet about how to explain these mysterious observations. Now we explain our accelerating universe. 

Using (16) we study the expansion theory of the Universe. Figure 2 shows a expansion model of the Universe. 

The rotation 1  of body A  emits tachyonic  flow, which forms the tachyonic field. Tachyonic  mass m  acts 

on body B , which produces its rotation 2 , revolution u and gravitational force 

R

mc
F

2

1 
,                             （21） 

where R  denotes the distance between body A  and body B , m  is gravitational mass converted into by 

tachyonic mass m  which is unobservable but m  is observable. 

The revolution of the body B  around body A  produces the centrifugal force 

R

uM
F B

2

1 
,                          （22） 

 
Fig. 2. A expansion model of the Universe 

 

where BM  is the inertial mass of body B , u  is the orbital velocity of body B . 

At the 2O  point we assume 

011  FF .                            （23） 
From (23) it follows that the coexistence of the gravitational force and centrifugal force. 
From (21)-(23) it follows the gravitational coefficient 

.
2











c

u

M

m

B


                        （24） 

At the 3O
 point the tachyonic  mass m can be converted into the rest mass m  in body B , it follows 
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R

mu

R

uM
F B

22

2 
.                         （25） 

Since 
012  FF

, centrifugal force 2F  is greater than gravitational force 1F
, then the body B  expands 

outwards and its mass increases. This is a expansion mechanism of the Universe. From (21)-(23) we have 
 
.                             (26) 
 
 
From (26) we obtain the expansion acceleration 
 
.                      (27) 
Substuting (24) in  (27) we obtain 
 
.                          (28) 
 

If body A  is the Earth, then body B is the Moon; if body A  is the Sun, then body B  is the Earth; …. It 
can explain our accelerating universe. In this model universe there are no dark matter and no dark energy. This 
simple thought made a deep impression on me. It impelled me toward a expansion theory of the universe without 
dark matter and dark energy. 

If the body A  is the Sun and body B  is the planet. We calculate the gravitational coefficients   as shown 
in table 1. 

 

Table 1:Values of the gravitational coefficients 


 

Planet u (km/sec) )10( 10  
Mercury 47.89 255.2 
Venus 35.03 136.5 
Earth 29.79 98.7 
Mars 24.13 64.8 
Jupiter 13.06 19.0 
Saturn 9.64 10.3 
Uranus 6.81 5.2 
Neptune 5.43 3.3 
Pluto 4.74 2.5 

 

Since gravitational mass m  can be transformed into the rest mass in body B , we define Einstein’s 

gravitational mass 
mMM ig 

 and inertial mass Bi MM 
 [6].. 

It follows 

ig MM 
.                          （29） 

Therefore it shows that the principle of equivalence in the Solar system is nonexistent. Of all the principles at 
work in gravitation, none is more central than the principles of equivalence[5], which could be wrong. 

The tachyonic mass m  can be converted into electrons and positrons which are the basic building-blocks of 
elementary particles [8,9]. In this universe there are no Higgs particles. They have not been produced at the Large 
Hadron Collider and other particle accelerators. 

From (21) it follows Newtonian gravitational formula. The m  is proportional to AM , which denotes inertial 

mass of body A , in (24) m  is proportional to BM , is inversely proportional to the distance R  between body 

A  and body B . It follows 

2

2 1 B e
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  
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R

MM
km BA

,                           （30） 

where k  is a constant. 
Substituting (30) into (21) it follows Newtonian gravitational formula[3,4] 

,
21

R

MM
GF BA

                          （31） 

where 
2kcG   is a gravitational constant. 

We have Einstein’s gravitational mass 

)1(  iig MmMM
.                    （32） 

Substituting (32) into (31) it follows Newtonian generalized gravitational formula 

21

)1()1(

R

MM
GF BBAA  


 ,                    （33） 

where A  and B  denote gravitational coefficients of body A  and body B  separately. 

Assume A  and B  denote the densities of body A  and body B  separately. In the same way from (21) 
it follows unified formula of the gravitational and strong forces [4] 

201

)1()1(

R

MM
GF BBBAAA  


               （34） 

where 
10

0 102.5 G
cm9/g3·sec2 is a new gravitational constant. 

In the nucleus exists the strong interactions. It follows[4] 

38Strong interaction
10

Gravitational interaction
s

g

G

G
 

                  （35） 

where 
8 3 26.7 10 cm / g secgG   

 and 
30 3 26.7 10 cm / g secsG   

 

In the nucleus we assume A B   
. From (34) it follows 

2
0sG G 

                                   （36） 
From (36) it follows the formula of the particle radii 

1/ 31.55[ (Gev)] jnr m ,                          （37） 

where 1 jn=
1510

cm and m (Gev) is the mass of the particles. 
From (37) it follows that the proton and neutron radii are 1.5 jn[4,10].Pohl et al measure the proton diameter 3 

jn[11]. 
We have the formula of the nuclear radii[12] 

1/ 31.2( )r A
fm,                                   （38） 

where 1 fm=
1310

cm and A  is its mass number. 

It  shows that (37) and (38) have the same form. The particle radii 5r   jn and the nuclear radii 7r  fm. 

Similar to equation (10) we define the tachyonic momentum of a string length 0x
 [1,4]. 

,lim 0
0

0
0

constumP
u
m






                       （39） 

where 0m
 is tachyonic string rest mass. 
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Since u  and 0t , tachyonic string has 
no rest mass and no rest time, it shows that tachyon is 
unobservable, that gravity is action-at-a-distance and 
gravitational wave is unobservable.  If quantum 
teleportation, quantum computation and quantum 
information are the tachyonic motion[13], then they are 
unobservable. 

A new universe model 
From above we suggest a new universe model. 

The universe has no beginning and no end. The 
universe is infinite, but it has a centre consisting of the 
tachyonic matter, which dominates motion of the entire 
universe. Therefore the universe is stable…..In the sun 
there is a centre consisting of the tachyonic matter, 
which dominates motion of the sun system. In the earth 
there is a centre consisting of the tachyonic matter, 
which dominates motion of the earth and the moon. In 
the moon there is a centre consisting of the tachyonic 
matter, which dominates motion of the moon. In atomic 
nucleus there is a centre consisting of the tachyonic 
matter, which dominates motion of the nucleus. 
Therefore atomic nuclei are stable. 

 
Conclusion 

Special relativity is the tardyonic theory. Einstein 
pointed out that velocities greater than that of light 
have –as in our previous results-no possibility of 
existence [14], which could be wrong. But gravitation 
is the tachyonic  theory and an action-at-a-distance. 

What is gravity? Newton wrote, “I have not been 
able to discover the cause of those properties of gravity 
from phenomena, and I frame no hypotheses …”. 
Einstein’s theory of general relativity answered 
Newton’s question: mass causes space-time curvature 
which is wrong. Gravity is the tachyonic centripetal 
force. 

Where did we come from? Where are we going ? 
What makes up the universe? These questions have 
occupied mankind for thousands of years. Over the 
course of history, our view of the world has changed. 
Theologians and philosophers, physicists and 
astronomers have given us very different answers. 
Where did we come from ? We answer this questions 

this way mm  ,tachyons   tardyons, that is 
gravitons can be converted into the electrons and 
positrons which are the basic building-blocks of 
particles. In this model Universe there are no quarks 
and no Higgs particles. Where are we going? We 

answer this question this way mm  , that is the 
tardyons produce tachyons. The tardyons and tachyons 
make up the Universe. 

Jiang found a gravitational formula[3] : 
2mcF

R
 

, where m  is the tachyonic  mass. In 
2004 Jiang studied the Universe expansion and 

found

2mcF
R

 
, where m  is gravitational mass 

converted into by tachyonic mass m . 
 
The author thanks Yong-Shi Wu to put forward 

this research. 
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