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Abstract: Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the 
Book proof. No great mathematicians study prime problems and prove Riemann hypothesis in AIM, CLAYMI, IAS, 

THES, MPIM, MSRI. In this paper using Jiang function 2 ( )J 
 we prove that the new prime theorems (991)-

（1040) contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest 

solution 0( , 2) 1k N 
. This is the Book theorem. 
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It will be another million years, at least, before we understand the primes. 
Paul Erdos (1913-1996) 
TATEMENT OF INTENT 
If elected. I am willing to serve the IMU and the international mathematical community as president of the 

IMU. I am willing to take on the duties and responsibilities of this function. 
These include (but are not restricted to) working with the IMU’s Executive Committee on policy matters and its 

tasks related to organizing the 2014 ICM，fostering the development of mathematics, in particular in developing 
countries and among young people worldwide, representing the interests of our community in contacts with other 
international scientific bodies, and helping the IMU committees in their function. 

--IMU president, Ingrid Daubechies— 
Satellite conference to ICM 2010 
Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve 

methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s 
conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple 
conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false: 

(http://www.wbabin.net/math/xuan77.pdf) 
(http://vixra.org/pdf/1003.0234v1.pdf). 
The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann hypothesis. In 1996 

Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang 
function, Jiang prove almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s 
isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress. 
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal (Green and 
Tao theorem is false) to see. 

(http://www.wbabin.net/math/xuan39e.pdf) 
(http://www.vixra.org/pdf/0904.0001v1.pdf). 
There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level. 

Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. For fostering the 
development of Jiang prime theory IMU is willing to take on the duty and responsibility of this function to see[new 
prime k-tuple theorems (1)-(20)] and [the new prime theorems (1)-(990)]: 
(http://www.wbabin.net/xuan.htm#chun-xuan) (http://vixra.org/numth/) 
 
The New Prime theorem（991） 

 
1902, ( 1, , 1)P jP k j j k   
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Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1902jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1902, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1902

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1902jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1902 2
1

( )
( ,2) : ~

(1902) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7k   
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（992） 
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1904, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1904jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1904, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1904

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1904jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1904 2
1

( )
( ,2) : ~

(1904) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,17, 29,113,137,239,953k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,17, 29,113,137,239,953k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17, 29,113,137, 239,953k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17, 29,113,137, 239,953k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（993） 
 

1906, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1906jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1906, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1906

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1906jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1906 2
1

( )
( ,2) : ~

(1906) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,1907k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,1907k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,1907k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,1907k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（994） 
 

1908, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1908jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1908, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1908

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1908jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1908 2
1

( )
( ,2) : ~

(1908) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,19,37,107k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,19,37,107k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,19,37,107k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,19,37,107k  ， 
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(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（995） 
 

1910, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1910jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1910, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1910

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1910jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1910 2
1

( )
( ,2) : ~

(1910) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,11,383k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,383k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,11,383k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,11,383k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（996） 

 
1912, ( 1, , 1)P jP k j j k     

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1912jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1912, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1912

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1912jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1912 2
1

( )
( ,2) : ~

(1912) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,479,1913k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,479,1913k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,479,1913k 

. 
From (2) and (3) we have 
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2 ( ) 0J  
                     （8） 

We prove that for 
3,5,479,1913k 

， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（997） 
 

1914, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1914jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1914, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1914

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1914jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1914 2
1

( )
( ,2) : ~

(1914) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7, 23,67k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7, 23,67k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7, 23,67k  . 
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From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7, 23,67k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（998） 
 

1916, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1916jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1916, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1916

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1916jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1916 2
1

( )
( ,2) : ~

(1916) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5k 

, 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 
3,5k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（999） 
 

1918, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1918jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1918, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1918

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1918jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1918 2
1

( )
( ,2) : ~

(1918) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 

 
The New Prime theorem（1000） 

 
1920, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1920jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1920, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1920

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1920jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1920 2
1

( )
( ,2) : ~

(1920) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,11,13,17,31, 41,61,97,193,241,641k   
. From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,11,13,17,31, 41,61,97,193,241,641k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,11,13,17,31, 41,61,97,193, 241,641k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,11,13,17,31, 41,61,97,193, 241,641k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1001） 
 

1922, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1922jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1922, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1922

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1922jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1922 2
1

( )
( ,2) : ~

(1922) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 
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Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1002） 
 

1924, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1924jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1924, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1924

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1924jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1924 2
1

( )
( ,2) : ~

(1924) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,53,149k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,53,149k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,53,149k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,53,149k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（1003） 

 
1926, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1926jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1926, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1926

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1926jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1926 2
1

( )
( ,2) : ~

(1926) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,19,643k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,19,643k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,19,643k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,19,643k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1004） 
 

1928, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1928jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1928, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1928

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1928jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

1928 2
1

( )
( ,2) : ~

(1928) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1005） 
 

1930, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1930jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1930, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1930

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1930jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1930 2
1

( )
( ,2) : ~

(1930) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,11,1931k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,1931k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,1931k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11,1931k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1006） 
 

1932, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1932jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1932, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1932

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1932jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 
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2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1932 2
1

( )
( ,2) : ~

(1932) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,29,43, 47,139,967,1933k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,29,43, 47,139,967,1933k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5, 7,13, 29, 43, 47,139,967,1933k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5, 7,13, 29, 43, 47,139,967,1933k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1007） 
 

1934, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1934jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1934, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1934

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1934jp + k j  is a prime. 
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Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1934 2
1

( )
( ,2) : ~

(1934) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1008） 
 

1936, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1936jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1936, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1936

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 
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P  such that each of 
1936jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1936 2
1

( )
( ,2) : ~

(1936) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,17, 23,89k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,17, 23,89k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17, 23,89k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17, 23,89k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（1009） 

 
1938, ( 1, , 1)P jP k j j k     

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1938jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1938, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1938

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1938jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1938 2
1

( )
( ,2) : ~

(1938) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,103k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,103k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,103k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,103k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1010） 
 

1940, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1940jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1940, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1940

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1940jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1940 2
1

( )
( ,2) : ~

(1940) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,11,971k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11,971k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11,971k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,11,971k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1011） 
 

1942, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1942jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1942, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 
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1
1942

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1942jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1942 2
1

( )
( ,2) : ~

(1942) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1012） 
 

1944, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1944jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1944, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 
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where P
P 
，

( )P
 is the number of solutions of congruence 

1
1944

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1944jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1944 2
1

( )
( ,2) : ~

(1944) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,19,37,109,163,487k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,19,37,109,163,487k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,19,37,109,163,487k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,19,37,109,163,487k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1013） 
 

1946, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1946jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1946, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1946

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1946jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1946 2
1

( )
( ,2) : ~

(1946) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1014） 
 

1948, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1948jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1948, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1948

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1948jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1948 2
1

( )
( ,2) : ~

(1948) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,1949k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,1949k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,1949k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,1949k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1015） 
 

1950, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1950jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
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1950, ( 1, , 1)P jP k j j k    .               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1950

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1950jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1950 2
1

( )
( ,2) : ~

(1950) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,11,31,79,131,151,1951k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,11,31,79,131,151,1951k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,11,31,79,131,151,1951k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,11,31,79,131,151,1951k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1016） 
 

1952, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1952jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 
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Theorem. Let k  be a given odd prime. 
1952, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1952

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1952jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1952 2
1

( )
( ,2) : ~

(1952) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,17,977k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,977k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17,977k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,17,977k  ， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（1017） 

 
1954, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 
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Using Jiang function we prove that 
1954jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1954, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1954

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1954jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1954 2
1

( )
( ,2) : ~

(1954) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1018） 
 

1956, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 
1956jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1956, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1956

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1956jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1956 2
1

( )
( ,2) : ~

(1956) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,653k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,653k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,653k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,653k 

， 
(1) contain infinitely many prime solutions 
 

 

he New Prime theorem（1019） 
 

1958, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1958jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1958, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1958

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1958jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1958 2
1

( )
( ,2) : ~

(1958) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3, 23k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3, 23k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 23k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3, 23k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1920） 
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1960, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1960jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1960, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1960

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1960jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1960 2
1

( )
( ,2) : ~

(1960) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,11,29,71,197, 491k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,11,29,71,197, 491k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,11, 29,71,197, 491k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,11, 29,71,197, 491k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（1021） 
 

1962, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1962jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1962, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1962

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1962jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1962 2
1

( )
( ,2) : ~

(1962) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,19k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,19k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,19k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（1022） 
 

1964, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1964jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1964, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1964

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1964jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1964 2
1

( )
( ,2) : ~

(1964) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,983k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,983k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,983k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5,983k 

， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1023） 
 

1966, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1966jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1966, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1966

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1966jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1966 2
1

( )
( ,2) : ~

(1966) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 
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2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1024） 
 

1968, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1968jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1968, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1968

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1968jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1968 2
1

( )
( ,2) : ~

(1968) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,17,83k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,17,83k  , 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 
3,5,7,13,17,83k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,17,83k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1025） 
 

1970, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1970jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1970, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1970

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1970jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1970 2
1

( )
( ,2) : ~

(1970) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,11k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 
3,11k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11k  ， 
(1) contain 

infinitely many prime solutions 
 

 

The New Prime theorem（1026） 
 

1972, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1972jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1972, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1972

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1972jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1972 2
1

( )
( ,2) : ~

(1972) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 



 Academia Arena 2016;8(1s)          http://www.sciencepub.net/academia 

 

873 

Example 1. Let 
3,5,59,1973k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,59,1973k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,59,1973k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,59,1973k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1027） 
 

1974, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1974jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1974, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1974

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1974jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1974 2
1

( )
( ,2) : ~

(1974) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7, 43, 283,659k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7, 43, 283,659k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7, 43, 283,659k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7, 43, 283,659k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（1028） 

 
1976, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1976jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1976, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1976

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1976jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1976 2
1

( )
( ,2) : ~

(1976) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,53k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,53k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,53k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,53k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1029） 
 

1978, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1978jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1978, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1978

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1978jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

1978 2
1

( )
( ,2) : ~

(1978) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3, 47,1979k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3, 47,1979k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 47,1979k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 47,1979k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1030） 
 

1980, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1980jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1980, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1980

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1980jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1980 2
1

( )
( ,2) : ~

(1980) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,11,13,19, 23,31,37,61,67,199,331,397k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,11,13,19, 23,31,37,61,67,199,331,397k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,11,13,19,23,31,37,61,67,199,331,397k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,11,13,19,23,31,37,61,67,199,331,397k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1031） 
 

1982, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1982jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1982, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1982

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1982jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 
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2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1982 2
1

( )
( ,2) : ~

(1982) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1032） 
 

1984, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1984jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1984, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1984

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1984jp

+
k j

 is a prime. 



 Academia Arena 2016;8(1s)          http://www.sciencepub.net/academia 

 

879 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1984 2
1

( )
( ,2) : ~

(1984) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,17k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,17k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1033） 
 

1986, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1986jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1986, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1986

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 
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P  such that each of 
1986jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1986 2
1

( )
( ,2) : ~

(1986) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7,1987k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,1987k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,1987k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,1987k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（1034） 

 
1988, ( 1, , 1)P jP k j j k     

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1988jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1988, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1988

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1988jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1988 2
1

( )
( ,2) : ~

(1988) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5, 29k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5, 29k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,29k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,29k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1035） 
 

1990, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1990jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1990, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1990

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1990jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1990 2
1

( )
( ,2) : ~

(1990) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,11k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1036） 
 

1992, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1992jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1992, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1992

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 
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If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1992jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1992 2
1

( )
( ,2) : ~

(1992) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,167, 499,997,1993k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,167, 499,997,1993k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,167, 499,997,1993k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,167, 499,997,1993k 

， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1037） 
 

1994, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1994jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1994, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 
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1
1994

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1994jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1994 2
1

( )
( ,2) : ~

(1994) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1038） 
 

1996, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1996jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1996, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 



 Academia Arena 2016;8(1s)          http://www.sciencepub.net/academia 

 

885 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1996

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1996jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1996 2
1

( )
( ,2) : ~

(1996) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,1997k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,1997k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,1997k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,1997k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1039） 
 

1998, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1998jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1998, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1998

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1998jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1998 2
1

( )
( ,2) : ~

(1998) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,19,223,1999k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,19,223,1999k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,19, 223,1999k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19, 223,1999k 

， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1040） 
 

2000, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
2000jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
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2000, ( 1, , 1)P jP k j j k    .               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
2000

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
2000jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2000 2
1

( )
( ,2) : ~

(2000) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,11,17, 41,101, 251, 401k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,17, 41,101, 251, 401k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,17, 41,101, 251, 401k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11,17, 41,101, 251, 401k  ， 
(1) contain infinitely many prime solutions 
 

 

Remark. The prime number theory is basically to count the Jiang function 1( )nJ   and Jiang prime k -tuple 

singular series 

1
2 ( ) 1 ( ) 1

( ) 1 (1 )
( )

k
k

k P

J P
J

P P

  


 


 

     
  [1,2], which can count the number of prime 

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series 

( ) 1
( ) 1 (1 ) k

P

P
H

P P


  

    
   is false [3-17], which cannot count the number of prime numbers[3]. 
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Szemerédi’s theorem does not directly to the 
primes, because it cannot count the number of primes.  

Cram é r’s random model cannot prove any prime 

problems. The probability of 1/ log N  of being 

prime is false. Assuming that the events “ P  is prime”, 

“ 2P   is prime” and “ 4P   is prime” are 

independent, we conclude that P , 2P  , 4P   
are simultaneously prime with probability about 

31/ log N . There are about 
3/ logN N  primes less 

than N . Letting N   we obtain the prime 
conjecture, which is false. The tool of additive prime 
number theory is basically the Hardy-Littlewood prime 
tuples conjecture, but cannot prove and count any 
prime problems[6]. 

Mathematicians have tried in vain to discover 
some order in the sequence of prime numbers but we 
have every reason to believe that there are some 
mysteries which the human mind will never penetrate. 

Leonhard Euler(1707-1783) 
It will be another million years, at least, before 

we understand the primes. 
 
Paul Erdos(1913-1996) 

 
 



 Academia Arena 2016;8(1s)          http://www.sciencepub.net/academia 

 

889 

Jiang’s function 1( )nJ   in prime distribution 
 

Chun-Xuan Jiang 
 

P. O. Box 3924, Beijing 100854, P. R. China 
jiangchunxuan@vip.sohu.com 

Dedicated to the 30-th anniversary of hadronic mechanics 
 
Abstract: We define that prime equations 

1 1 1( , , ), , ( , )n k nf P P f P P  
              （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are all prime. If Jiang’s 

function 1( ) 0nJ  
 then （5）has finite prime solutions. If 1( ) 0nJ  

 then there are infinitely many primes 

1, , nP P
 such that 1, kf f

 are  primes. We obtain a unite prime formula in prime distribution 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. 
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough 
to be useful. 

Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every 
reason to believe that there are some mysteries which the human mind will never penetrate. 

Leonhard Euler 
It will be another million years, at least, before we understand the primes. 
Paul Erdös 
 
Suppose that Euler totient function 

2
( ) ( 1)

P
P 


    

 as   ，            （1） 

where 2 P
P


 

 is called primorial. 

Suppose that
( , ) 1ih 

, where 1, , ( )i    . We have prime equations 

1 ( ) ( )1, ,P n P n h       
                 （2） 

where 0,1, 2,n   . 

（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. We 
have 

(mod )

( )
1 (1 (1)).

( )i

i

i i

h
P N

P h

N
o






 


  
,                （3） 

where ih denotes the number of primes iP N
 in i iP n h 

 
0,1, 2,n  

, 
( )N

 the number of 

primes less than or equal to N . 
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in 

prime distribution. 

Let 30   and 
(30) 8 

. From (2) we have eight prime equations 
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1 30 1P n 
, 2 30 7P n 

, 3 30 11P n 
, 4 30 13P n 

, 5 30 17P n 
, 

6 30 19P n 
, 7 30 23P n 

, 8 30 29P n 
, 0,1, 2,n             （4） 

Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

1 1 1( , , ), , ( , , )n k nf P P f P P  
                        （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are primes. If Jiang’s 

function 
0)(1  nJ

 then (5) has finite prime solutions. If 
0)(1  nJ

 then there exist infinitely many 

primes 1, , nP P
 such that each kf  is a prime. 

PROOF. Firstly, we have Jiang’s function [1-11] 

1
3

( ) [( 1) ( )]n
n

P
J P P 


   

,                     （6） 

where 
( )P

 is called sieve constant and denotes the number of solutions for the following congruence 

1
1

( , , ) 0 (mod )
k

i n
i

f q q P

 

,                    （7） 

where 1 1, , 1, , 1, , 1nq P q P     
. 

1( )nJ   denotes the number of sets of 1, , nP P
 prime equations such that 

1 1 1( , , ), , ( , , )n k nf P P f P P  
 are prime equations. If 1( ) 0nJ  

 then (5) has finite prime solutions. If 

1( ) 0nJ  
 using 

( )P
 we sift out from (2) prime equations which can not be represented 1, , nP P

, then 

residual prime equations of (2) are 1, , nP P
 prime equations such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are  

prime equations. Therefore we prove that there exist infinitely many primes 1, , nP P
 such that 

1 1( , , ), ,nf P P 
 1( , , )k nf P P

 are primes. 
Secondly, we have the best asymptotic formula [2,3,4,6] 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

（8）is called a unite prime formula in prime distribution. Let 1, 0n k  , 2 ( ) ( )J   
. From (8) we 

have prime number theorem 

 1 1 1( , 2) : is prime (1 (1)).
log

N
N P N P o

N
    

.      （9） 
 
Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this 

old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because 
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by 
this theorem. 

Example 1. Twin primes , 2P P  (300BC). 
From (6) and (7) we have Jiang’s function 

2
3

( ) ( 2) 0
P

J P


   
. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   is a prime equation. 
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Therefore we prove that there are infinitely many primes P  such that 2P   is a prime. 

Let 30   and 2 (30) 3J 
. From (4) we have three P  prime equations 

3 5 830 11, 30 17, 30 29P n P n P n     
. 

From (8) we have the best asymptotic formula 

  2
2 2 2

( )
( ,2) : 2 prime (1 (1))

( ) log

J N
N P N P o

N

 


 
    

 

2 23

1
2 1 (1 (1)).

( 1) logP

N
o

P N

 
    

   
In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J 
 denotes the number of P  prime equations, 

2 2
(1 (1))

( ) log

N
o

N



 


 the number of 

solutions of primes for every P  prime equation. 

Example 2. Even Goldbach’s conjecture 1 2N P P 
. Every even number 6N   is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

2
3

1
( ) ( 2) 0

2P P N

P
J P

P





    

 . 

Since 2 ( ) 0J  
 as N   in (2) exist infinitely many 1P

 prime equations such that 1N P
 is a 

prime equation. Therefore we prove that every even number 6N   is the sum of two primes. 
From (8) we have the best asymptotic formula 

  2
2 1 1 2 2

( )
( ,2) , prime (1 (1)).

( ) log

J N
N P N N P o

N

 


 
    

 

2 23

1 1
2 1 (1 (1))

( 1) 2 logP P N

P N
o

P P N

  
     

   . 
In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations 
, 2, 6P P P 

. 
From (6) and (7) we have Jiang’s function 

2
5

( ) ( 3) 0
P

J P


   
, 

2 ( )J 
 is denotes the number of P  prime equations such that 2P   and 6P   are  prime equations. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   and 6P   are  prime 

equations. Therefore  we prove that there are infinitely many primes P  such that 2P   and 6P   are  
primes. 

Let 230, (30) 2J  
. From (4) we have two P  prime equations 

3 530 11, 30 17P n P n   
. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(
primes}are6,2:{)2,(

33

2
2

3 o
N

NJ
PPNPN 






 

Example 4. Odd Goldbach’s conjecture 1 2 3N P P P  
. Every odd number 9N   is the sum of three primes. 

From (6) and (7) we have Jiang’s function 
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 2
3 23

1
( ) 3 3) 1 0

3 3P P N
J P P

P P




 
       

   . 

Since 3( ) 0J  
 as N   in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 

1 2N P P 
 is a prime equation. Therefore we prove that every odd number 9N   is the sum of three primes. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : prime (1 (1))

2 ( ) log

J N
N P P N N P P o

N

 


 
     

. 
2

3 3 33

1 1
1 1 (1 (1))

( 1) 3 3 logP P N

N
o

P P P N

   
        

     . 

Example 5. Prime equation 3 1 2 2P PP 
. 

From (6) and (7) we have Jiang’s function 

 2
3

3
( ) 3 2 0

P
J P P


    

 

3 ( )J 
 denotes the number of pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. 

Since 3( ) 0J  
 in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : 2 prime (1 (1)).

4 ( ) log

J N
N P P N PP o

N

 


 
    

 

Note. deg 1 2( ) 2PP 
. 

Example 6 [12].  Prime equation 
3 3

3 1 22P P P 
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 

      

, 

where 
( ) 3( 1)P P  

 if 

1

32 1(mod )
P

P



; 

( ) 0P 
 if 

1

32 1(mod )
P

P


 ; 
( ) 1P P  

 
otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a 

prime equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 

)).1(1(
log)(6

)(
prime}2:,{)3,(

3

2

3

33
2

3
1212 o

N

NJ
PPNPPN 






 

Example 7 [13].  Prime equation 
4 2

3 1 2( 1)P P P  
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 

      

 

where ( ) 2( 1)P P    if 1(mod 4)P  ; ( ) 2( 3)P P    if 1(mod8)P  ; ( ) 0P   
otherwise. 
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Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a 

prime equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

8 ( ) log

J N
N P P N P o

N

 


 
   

 
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of 

length k . 

1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d       
.    （10） 

From (8) we have the best asymptotic formula 

primes}are)1(,,,:{)2,( 11112 dkPdPPNPN  
 

1
2 ( )

(1 (1)).
( ) log

k

k k

J N
o

N

 

 



 
. 

If 2 ( ) 0J  
 then (10) has finite prime solutions. If 2 ( ) 0J  

 then there are infinitely many primes 1P
 

such that  2 , , kP P
 are  primes. 

To eliminate d  from (10) we have 

3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k       
. 

From (6) and (7) we have Jiang’s function 

3
3

( ) ( 1) ( 1)( 1) 0
P k k P

J P P P k
  

       
 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 

3, , kP P
 are prime equations. Therefore we prove that there are infinitely many pairs of primes 1P

 and 2P
 

such that 3, , kP P
 are primes. 

From (8) we have the best asymptotic formula 

 1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j k        
 

2 2
3( )

(1 (1))
2 ( ) log

k

k k

J N
o

N

 

 



 
     

2 2 2

1 12

1 ( 1)
(1 (1))

2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N
o

P P N

 

   

 
   

  . 

Example 9. It is a well-known conjecture that one of 
2, 2, 2P P P   is always divisible by 3. To generalize 

above to the k  primes, we prove the following conjectures. Let n  be a square-free even number. 

1. 
2, ,P P n P n  , 

where 
3 ( 1)n 

. 

From (6) and (7) we have 2 (3) 0J 
, hence one of 

2, ,P P n P n 
 is always divisible by 3. 

2. 
2 4, , , ,P P n P n P n  

, 

where 
5 ( ), 2,3.n b b 

 

From (6) and (7) we have 2 (5) 0J 
, hence one of 

2 4, , , ,P P n P n P n    is always divisible by 5. 

3. 
2 6, , , ,P P n P n P n   , 
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where 
7 ( ), 2, 4.n b b 

 

From (6) and (7) we have 2 (7) 0J 
, hence one of 

2 6, , , ,P P n P n P n  
 is always divisible by 7. 

4. 
2 10, , , ,P P n P n P n  

, 

where 
11 ( ), 3,4,5,9.n b b 

 

From (6) and (7) we have 2 (11) 0J 
, hence one of 

2 10, , , ,P P n P n P n    is always divisible by 
11. 

5. 
2 12, , , ,P P n P n P n  

, 

where 
13 ( ), 2,6,7,11.n b b 

 

From (6) and (7) we have 2 (13) 0J 
, hence one of 

2 12, , , ,P P n P n P n    is always divisible by 
13. 

6. 
2 16, , , ,P P n P n P n   , 

where 
17 ( ), 3,5,6,7,10,11,12,14,15.n b b 

 

From (6) and (7) we have 2 (17) 0J 
, hence one of 

2 16, , , ,P P n P n P n  
 is always divisible by 

17. 

7. 
2 18, , , ,P P n P n P n  

, 

where 
19 ( ), 4,5,6,9,16.17.n b b 

 

From (6) and (7) we have 2 (19) 0J 
, hence one of 

2 18, , , ,P P n P n P n  
 is always divisible by 

19. 

Example 10. Let n  be an even number. 

1. , , 1,3,5, ,2 1iP P n i k   , 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such 

that , iP P n  are  primes for any k . 

2. , , 2, 4,6, , 2iP P n i k   . 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such 

that , iP P n  are  primes for any k . 

Example 11. Prime equation 2 1 32P P P 
 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 3 2) 0
P

J P P


    
. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is 

prime equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

2 ( ) log

J N
N P P N P o

N
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In the same way we can prove 
2

2 3 12P P P 
 

which has the same Jiang’s function. 
Jiang’s function is accurate sieve function. Using 

it we can prove any irreducible prime equations in 
prime distribution. There are infinitely many twin 
primes but we do not have rigorous proof of this old 
conjecture by any method [20]. As strong as the 
numerical evidence may be, we still do not even know 
whether there are infinitely many pairs of twin primes 
[21]. All the prime theorems are conjectures except the 
prime number theorem, because they do not prove the 
simplest twin primes. They conjecture that the prime 
distribution is randomness [12-25], because they do not 
understand theory of prime numbers. 
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The Hardy-Littlewood prime k-tuple conjecture is false 
 

Chun-Xuan Jiang 
 

P. O. Box 3924, Beijing 100854, P. R. China 
Jiangchunxuan@vip.sohu.com 

 

Abstract: Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime 

k -tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple 
conjecture. 

 

(A) Jiang prime k -tuple theorem [1, 2]. 

We define the prime k -tuple equation 

, ip p n
,                        （1） 

where 
2 , 1, 1in i k 

. 
we have Jiang function [1, 2] 

2 ( ) ( 1 ( ))
P

J P P    
,                  （2） 

where P
P 

, ( )P  is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

, 
1, , 1q p 

.                  （3） 

If 
( ) 1P P  

 then 2 ( ) 0J  
. There exist infinitely many primes P  such that each of iP n

 is 

prime. If ( ) 1P P    then 2 ( ) 0J  
. There exist finitely many primes P  such that each of iP n

 is 

prime. 2 ( )J 
 is a subset of Euler function ( )  [2]. 

If 2 ( ) 0J  
, then we hae the best asymptotic formula of the number of prime P [1, 2] 

 
1

2 ( )
( ,2) : ~ ( )

( ) log log

k

k i k k k

J N N
N P N P n prime C k

N N

 


 



    
   （4） 

( ) ( 1)
P

P    
， 

1 ( ) 1
( ) 1 1

k

P

P
C k

P P




  
     

                                    （5） 

Example 1. Let 2, , 2k P P  , twin primes theorem. 
From (3) we have 

(2) 0, ( ) 1P    if 2P  ,                （6） 
Substituting (6) into (2) we have 

2
3

( ) ( 2) 0
P

J P


   
                        （7） 

There exist infinitely many primes P  such that 2P   is prime. Substituting (7) into (4) we have the best 
asymptotic pormula 

  2 23

1
( ,2) : 2 ~ 2 (1 ) .

( 1) log
k

P

N
N P N P prime

P N



     

   （8） 
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Example 2. Let 
3, , 2, 4k P P P  

. 
From (3) we have 

(2) 0, (3) 2                       （9） 
From (2) we have 

2 ( ) 0J  
.                        （10） 

It has only a solution 3P  , 2 5P   , 4 7P   . One of , 2, 4P P P   is always divisible by 3. 

Example 3. Let 4, ,k P P n  , where 2,6,8n  . 
From (3) we have 

(2) 0, (3) 1, ( ) 3P      if 3P  .              （11） 
Substituting (11) into (2) we have 

2
5

( ) ( 4) 0
P

J P


   
,                          （12） 

There exist infinitely many primes P  such that each of P n  is prime. 
Substituting (12) into (4) we have the best asymptotic formula 

 
3

4 4 45

27 ( 4)
( ,2) : ~

3 ( 1) logP

P P N
N P N P n prime

P N





    

        （13） 

Example 4. Let 5k  , P , P n , where 2,6,8,12n  . 
From (3) we have 

(2) 0, (3) 1, (5) 3, ( ) 4P      
 if 5P           （14） 

Substituting (14) into (2) we have 

2
7

( ) ( 5) 0
P

J P


   
                         （15） 

There exist infinitely many primes P  such that each of P n  is prime. Substituting (15) into (4) we have 
the best asymptotic formula 

 
4 4

5 11 5 57

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （16） 

Example 5. Let 6k  ，P , P n , where 2,6,8,12,14n  . 
From (3) and (2) we have 

2(2) 0, (3) 1, (5) 4, (5) 0J     
         （17） 

It has only a  solution 5P  , 2 7P   , 6 11P   , 8 13P   , 12 17P   , 14 19P   . One 

of P n  is always divisible by 5. 

（B）The Hardy-Littlewood prime k -tuple conjecture[3-14]. 
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999). 

We define the prime k -tuple equation 

, iP P n
                             （18） 

where 
2 , 1, , 1in i k 

. 
In 1923 Hardy and Littlewood conjectured the asymptotic formula 

 ( ,2) : ~ ( )
log

k i k

N
N P N P n prime H k

N
    

,            （19） 
where 
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( ) 1
( ) 1 1

k

P

P
H k

P P




  
     

                    （20） 

( )P  is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

，  1, ,q P  .             （21） 

From (21) we have 
( )P P 

 and 
( ) 0H k 

. For any prime k -tuple equation there exist infinitely many 

primes P  such that each of iP n
 is prime, which is false. 

Conjectore 1. Let 2, , 2k P P  , twin primes theorem 
Frome (21) we have 

( ) 1P                       （22） 
Substituting (22) into (20) we have 

(2)
1P

P
H

P
 

                  （23） 
Substituting (23) into (19) we have the asymptotic formula 

 2 2
( ,2) : 2 ~

1 logP

P N
N P N P prime

P N
     

      （24） 
which is false see example 1. 

Conjecture 2. Let 3, , 2, 4k P P P   . 
From (21) we have 

(2) 1, ( ) 2P  
 if 2P                 （25） 

Substituting (25) into (20) we have 
2

33

( 2)
(3) 4

( 1)P

P P
H

P


 

                    （26） 
Substituting (26) into (19) we have asymptotic formula 

 
2

3 3 33

( 2)
( , 2) : 2 , 4 ~ 4

( 1) logP

P P N
N P N P prime P prim

P N





      

  （27） 
which is false see example 2. 

Conjecutre 3. Let 4k  , ,P P n , where 2,6,8n  . 
From (21) we have 

(2) 1, (3) 2, ( ) 3P    
 if 3P              （28） 

Substituting (28) into (20) we have 
3

43

27 ( 3)
(4)

2 ( 1)P

P P
H

P


 

                 （29） 
Substituting (29) into (19) we have asymptotic formula 

 
3

4 4 43

27 ( 3)
( ,2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （30） 
Which is false see example 3. 

Conjecture 4. Let 
5, ,k P P n 

, where 
2,6,8,12n 

 
From (21) we have 

(2) 1, (3) 2, (5) 3, ( ) 4P        if 5P               （31） 
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Substituting (31) into (20) we have 
4 4

5 55

15 ( 4)
(5)

4 ( 1)P

P P
H

P


 

                 （32） 
Substituting (32) into (19) we have asymptotic formula 

 
4 4

5 5 5 55

15 ( 4)
( , 2) : ~

4 ( 1) logP

P P N
N P N P n prime

P N





    

   （33） 
Which is false see example 4. 

Conjecutre 5. Let 6k  , P , P n , where 
2,6,8,12,14n 

. 
From (21) we have 

(2) 1, (3) 2, (5) 4, ( ) 5P      
 if 5P         （34） 

Substituting (34) into (20) we have 
5 5

13 65

15 ( 5)
(6)

2 ( 1)P

P P
H

P


 

                 （35） 
Substituting (35) into (19) we have asymptotic formula 

 
5 5

6 13 6 65

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

  （36） 
which is false see example 5. 
 

Conclusion. The Hardy-Littlewood prime k -tuple 
conjecture is false. The tool of addive prime number 
theory is basically the Hardy-Littlewood prime tuples 

conjecture. Jiang prime k -tuple theorem can replace 

Hardy-Littlewood prime k -tuple Conjecture. There 
cannot be really modern prime theory without Jiang 
function. 
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Riemann Paper (1859) Is False 
 

Chun-Xuan. Jiang 
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Abstract: In 1859 Riemann defined the zeta function ( )s . From Gamma function he derived the zeta function 

with Gamma function ( )s . ( )s  and 
( )s

are the two different functions. It is false that ( )s  replaces 

( )s
. After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 

( )nJ 
 can replace RH. 

 
AMS  mathematics subject classification: Primary 11M26. 
 
 
In 1859 Riemann defined the Riemann zeta function (RZF)[1] 

1

1

1
( ) (1 )s

sP
n

s P
n




 



   
 ,       （1） 

where 
, 1s ti i   

，  and t  are real, P ranges over all primes. RZF is the function of the 

complex variable s  in 0, 0t   ，which is absolutely convergent. 
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2] 

(1 ) 0ti  
.                   （2） 

In 1998 Jiang proved [3] 

( ) 0s 
,                       （3） 

where  0 1  . 
Riemann paper (1859) is false [1]  We define Gamma function [1, 2] 

1
2

02

s
ts

e t dt
 

 
  
 


.                  （4） 

For 0  . On setting 
2t n x , we observe that 

21
2 2

02

s s
s n xs

n x e dx
 

  
  
 


.            （5） 

Hence, with some care on exchanging summation and integration, for 1  , 

21
2 2

0
1

( )
2

s s
n x

n

s
s x e dx 

 




  
    
   


 

1
2

0

( ) 1

2

s x
x dx

   
  

 


,            （6） 

where 
( )s

 is called Riemann zeta function with gamma function rather than ( )s , 

2

( ) : n x

n

x e 






 
,                （7） 

is the Jacobi theta function. The functional equation for 
( )x

 is 
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1
12 ( ) ( ),x x x                     （8） 

and is valid for 0x  . 

Finally, using the functional equation of 
( )x

, we obtain 

12 1
2 2 2

1

1 ( ) 1
( ) ( ) ( ) .

( 1) 2

2

s
s s x

s x x dx
s s s

 


    
    

    
 



   （9） 
From (9) we obtain the functional equation 

1

2 2
1

( ) (1 )
2 2

s ss s
s s   


      
     
    .              （10） 

The function 
( )s

 satisfies the following 

1. 
( )s

 has no zero for 1  ; 

2. The only pole of 
( )s

 is at 1s  ; it has residue 1 and is simple; 

3. 
( )s

 has trivial zeros at 
2, 4, ...s   

 but 
( )s

 has no zeros; 

4. The nontrivial zeros lie inside the region 0 1   and are symmetric about both the vertical line 

1 / 2  . 

The strip 0 1   is called the critical strip and the vertical line 1 / 2   is called the critical line. 

Conjecture  (The Riemann Hypothesis). All nontrivial zeros of 
( )s

 lie on the critical line 1 / 2  , which is 
false. [3] 

( )s
 and 

( )s
 are the two different functions. It is false that 

( )s
 replaces 

( )s
, Pati proved that is 

not all complex zeros of 
( )s

 lie on the critical line: 1/ 2   [4]. 
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly 

related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang 

discovered Jiang function 
( )nJ 

 which can replace RH, Riemann zeta function and L-function in view of its 

proved feature: if 
( ) 0nJ  

 then the prime equation has infinitely many prime solutions; and if 
( ) 0nJ  

, 

then the prime equation has finitely many prime solutions. By using 
( )nJ 

 Jiang proves about 600 prime 
theorems including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in 
primes[7,8]. 

In the same way we have a general formula involving 
( )s

 

1 1

0 0
1 1

( ) ( )s s

n n

x F nx dx x F nx dx
  

 

 

  
 

1 1

0 0
1

1
( ) ( ) ( )s s

s
n

y F y dy s y F y dy
n


  

 



   
,       （11） 

where 
( )F y

 is arbitrary. 

From (11) we obtain many zeta functions 
( )s

 which are not directly related to the number theory. 
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly 

related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green 
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and Tao prove that there exist infinitely many arithmetic progressions of length k  consisting only of primes which 
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves 
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions 
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT  which is 
Fermat’s marvelous proof[7, 13]. 

Primes Represented by 1 2
n nP mP

[14] 

（1）Let 3n   and 2m  . We have 
3 3

3 1 22P P P 
. 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where ( ) 2 1P P    if 

1

32 1
P

  (mod P ); ( ) 2P P     if 

1

32 1
P

  (mod P ); ( ) 1P   
otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
3 3

2 1 2 1 2 1 2 3( ,3) { , : , , 2 prime}N P P P P N P P P    
 

2 2 2
3

3 3 3 3
3

( ) 1 ( 3 3 ( ))
~

6 ( ) log 3 ( 1) logP

J N P P P P N

N P N

  

 

  


 


. 

where 2 P

P



 is called primorial, 2

( ) ( 1)
P

P


  
. 

It is the simplest theorem which is called the Heath-Brown problem [15]. 

（2）Let 0n P
 be an odd prime, 

2 m
 and 

0Pm b  . 
we have 

0 0

3 1 2
P PP P mP 

 
We have 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where 
( ) 2P P   

 if 0 0; ( ) ( 1) 2P m P P P P    
 if 

0

1

1

P

Pm



  (mod P ); 

( ) 2P P     if 
0

1

1

P

Pm



 (mod P ); ( ) 1P   otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have 
2

3
2 3 3

0

( )
( ,3) ~ .

2 ( ) log

J N
N

P N

 



  . 

The Polynomial 
2

1 2( 1)nP P 
 Captures Its Primes [14] 

（1）Let 4n  , We have 
4 2

3 1 2( 1)P P P  
, 

We have Jiang function 
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2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where 
( )P P 

 if 1P   (mod 4); 
( ) 4P P  

 if 1P  （mod 8）; 
( ) 2P P   

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
4 2

2 1 2 1 2 1 2 3( ,3) { , : , , ( 1) prime}N P P P P N P P P     
 

2
3

3 3

( )
~

8 ( ) log

J N

N

 

 . 
It is the simplest theorem which is called Friedlander-Iwaniec problem [16]. 

（2）Let 4n m , We have 
4 2

3 1 2( 1)mP P P  
, 

where 
1, 2,3,m  

. 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
iP P

J P P P 
 

    
, 

where 
( ) 4P P m  

 if 
8 ( 1) ; ( ) 4m P P P  

 if 
8 ( 1)P 

;
( )P P 

if 
4 ( 1)P 

; 

( ) 2P P     otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is a prime. It is a 
generalization of Euler proof for the existence of infinitely many primes. 

We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3

( )

8 ( ) log

J N

m N

 

 . 

（3）Let 2n b .  We have 
2 2

3 1 2( 1)bP P P  
, 

where b  is an odd. 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where ( ) 2P P b    if 
4 ( 1); ( ) 2b P P P  

 if 
4 ( 1)P 

; ( ) 2P P     otherwise. 
We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3

( )

4 ( ) log

J N

b N

 

 . 

（4）Let 0n P
, We have 

0 2
3 1 2( 1)PP P P  

. 

where 0P
 is an odd. Prime. 

we have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 
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where 0( ) 1P P  
 if 0 ( 1); ( ) 0P P P 

 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is also a prime. 
We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3
0

( )

2 ( ) log

J N

P N

 


. 

 

The Jiang function 
( )nJ 

 is closely related to 

the prime distribution. Using 
( )nJ 

 we are able to 
tackle almost all prime problems in the prime 
distributions. 
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