The New Prime theorem (13)

$$n \times a^n \pm 1$$
 and $n \times 2^n \pm 1$

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China jiangchunxuan@vip.sohu.com

Abstract: Using Jiang function we prove that $n \times a^n \pm 1$ have infinitely many prime solutions and $n \times 2^n \pm 1$ have finite prime solutions.

[Chun-Xuan Jiang. The New Prime theorem (13) $n \times a^n \pm 1$ and $n \times 2^n \pm 1$. Academ Arena 2015;7(1s): 16-17]. (ISSN 1553-992X). http://www.sciencepub.net/academia. 13

Keywords: prime; theorem; function; number; new

Theorem. We define the irreducible prime equation

$$P_1 = n \times (P - 1)^n + 1 \tag{1}$$

For every positive integer n there exist infinitely many primes P such that P_1 is a prime. **Proof**. We have Jiang function[1]

$$J_2(\omega) = \prod_{P} [P - 1 - \chi(P)], \tag{2}$$

where $\omega = \prod_{P} P$, $\chi(P)$ is the number of solutions of congruence

$$n \times (q-1)^n + 1 \equiv 0 \pmod{P}, \quad q = 1, \dots, P-1.$$
(3)

From (3) we have that if n = 3b + 2 then $\chi(3) = 1$, $\chi(3) = 0$ otherwise, $\chi(P) < P - 1$. We have $J_2(\omega) \neq 0$.

We prove that there exist infinitely many primes P such that P_2 is a prime. We have asymptotic formula [1]

$$\pi_2(N,2) = \left| \left\{ P \le N : n \times (P-1)^n + 1 = prime \right\} \right| \sim \frac{J_2(\omega)\omega}{n\phi^2(\omega)} \frac{N}{\log^2 N}$$
(5)

where $\phi(\omega) = \prod_{P} (P-1)$

Let P = 3. From (1) we have Cullen equation

$$P_1 = n \times 2^n + 1 \tag{6}$$

From (5) we have

From (3) we have
$$\pi_2(3,2) \sim \frac{J_2(\omega)}{n\phi^2(\omega)} \frac{3}{\log^2 3} \to 0$$
as $n \to \infty$
(7)

We prove the finite Cullen primes.

In the same way we are able to prove that $n \times a^n - 1$ has infinitely many prime solutions, $n \times 2^n - 1$ has definite prime solutions and $n \times 2^n \pm 1$ have finite prime solutions.

Author in US address:

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Institute for Basic Research Palm Harbor, FL 34682, U.S.A.

Reference

- Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math/xuan2. pdf. Chun-Xuan Jiang. **Automorphic Functions And Fermat's Last Theorem (1).** Rep Opinion 2012;4(8):1-6].
- (ISSN: 1553-9873). http://www.sciencepub.net/report/report0408/001 10009report0408 1 6.pdf.
- Chun-Xuan Jiang. Jiang's function $J_{n+1}(\omega)$ in prime distribution. Rep Opinion 2012;4(8):28-34]. (ISSN: 1553-9873). http://www.sciencepub.net/report/report0408/007 10015report0408 28 34.pdf.
- Chun-Xuan Jiang. The Hardy-Littlewood prime k-tuple conjecture is false. Rep Opinion 2012;4(8):35-38]. (ISSN: 1553-9873). http://www.sciencepub.net/report/report0408/008_10016report0408_35_38.pdf.
- Chun-Xuan Jiang. A New Universe Model. Academ Arena 2012;4(7):12-13] (ISSN 1553-992X). http://sciencepub.net/academia/aa0407/003 10067aa0407 12 13.pdf.

5/1/2015