No. |
Titles /
Authors /Abstracts |
Full Text |
No. |
1 |
Twin prime conjecture
and Goldbach Conjecture
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China.
jcxuan@sina.com
Abstract:
Using Jiang function we
prove that there exist infinitely many primes
such
that is
prime We prove twin prime conjecture and Goldbach
conjecture.
[Chun-Xuan Jiang.
Twin prime conjecture and Goldbach Conjecture.
Academ Arena 2015;7(1s):1-2]. (ISSN 1553-992X).
http://www.sciencepub.net/academia. 1
doi:10.7537/marsaaj0701s15.01
Keywords:
prime; theorem; function; number |
Full Text |
1 |
2 |
On The Prime
Equations: and
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China.
jcxuan@sina.com
Abstract:
Using Jiang function we
prove that there exist infinitely many primes such
that and are
all prime.
[Chun-Xuan Jiang.
On The Prime
Equations: and .
Academ Arena
2015;7(1s): 3-3].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
2
doi:10.7537/marsaaj0701s15.02
Keywords:
prime; theorem; function; number; new |
Full Text |
2 |
3 |
On The Prime
Equations:
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jcxuan@sina.com
Abstract:
Using Jiang function we prove that there exist
infinitely many primes such
that each is
a prime.
[Chun-Xuan Jiang.
On The Prime
Equations:.
Academ Arena
2015;7(1s): 4-4].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
3
doi:10.7537/marsaaj0701s15.03
Keywords:
prime; theorem; function; number; new |
Full Text |
3 |
4 |
On The Prime
Equations:
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China.
jcxuan@sina.com
Abstract:
Using Jiang function we prove that there exist
infinitely many primes such
that each is
a prime.
[Chun-Xuan Jiang.
On The Prime
Equations:.
Academ Arena
2015;7(1s): 5-5].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
4
doi:10.7537/marsaaj0701s15.04
Keywords:
prime; theorem; function; number; new |
Full Text |
4 |
5 |
On The Prime
Equations:
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China.
jcxuan@sina.com
Abstract:
Using Jiang function we prove that there exist
infinitely many primes such
that each is
a prime.
[Chun-Xuan Jiang.
On The Prime
Equations:.
Academ Arena
2015;7(1s): 6-6].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
5
doi:10.7537/marsaaj0701s15.05
Keywords:
prime; theorem; function; number; new |
Full Text |
5 |
6 |
On The Prime
Equatons:
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China.
jcxuan@sina.com
Abstract:
Using Jiang function we
prove that there exist infinitely many primes such
that each is
a prime.
[Chun-Xuan Jiang.
On The Prime
Equatons: .
Academ Arena
2015;7(1s): 7-7].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
6
doi:10.7537/marsaaj0701s15.06
Keywords:
prime; theorem; function; number; new |
Full Text |
6 |
7 |
On The Prime theorem:
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jcxuan@sina.com
Abstract:
Using Jiang function we prove that there exist
infinitely many primes such
that each is
a prime.
[Chun-Xuan Jiang.
On The Prime theorem:.
Academ Arena
2015;7(1s): 8-8].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
7
doi:10.7537/marsaaj0701s15.07
Keywords:
prime; theorem; function; number; new |
Full Text |
7 |
8 |
On The Prime theorem:
has
no prime solutions
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jcxuan@sina.com
Abstract:
Using Jiang function we prove that has
no prime solutions.
[Chun-Xuan Jiang.
On The Prime theorem:
has
no prime solutions.
Academ Arena
2015;7(1s): 9-10].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
8
doi:10.7537/marsaaj0701s15.08
Keywords:
prime; theorem; function; number; new |
Full Text |
8 |
9 |
There are finite
Fermat primes
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China.
jcxuan@sina.com
Abstract:
Using Jiang function we
prove the finite Fermat primes.
[Chun-Xuan Jiang.
There are finite
Fermat primes.
Academ Arena
2015;7(1s): 11-11].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
9
doi:10.7537/marsaaj0701s15.09
Keywords:
prime; theorem; function; number; new |
Full Text |
9 |
10 |
There are finite
Mersenne primes and There are finite repunits primes
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jcxuan@sina.com
Abstract:Using
Jiang function we prove the finite Mersenne primes and
the finite repunits primes.
[Chun-Xuan Jiang.
There are finite
Mersenne primes and There are finite repunits primes.
Academ Arena
2015;7(1s): 12-13].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
10
doi:10.7537/marsaaj0701s15.10
Keywords:
prime; theorem; function; number; new |
Full Text |
10 |
11 |
The New Prime theorem(11)
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China.
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that has
infinitely many prime solutions.
[Chun-Xuan Jiang.
The New Prime theorem(11).
Academ Arena
2015;7(1s): 14-14].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
11
doi:10.7537/marsaaj0701s15.11
Keywords:
prime; theorem; function; number; new |
Full Text |
11 |
12 |
The New Prime theorem(12)
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that has
infinitely many prime solutions.
[Chun-Xuan Jiang.
The New Prime theorem(12).
Academ Arena
2015;7(1s): 15-15].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
12
doi:10.7537/marsaaj0701s15.12
Keywords:
prime; theorem; function; number; new |
Full Text |
12 |
13 |
The New Prime theorem(13)
and
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R.
China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that have
infinitely many prime solutions and have
finite prime solutions.
[Chun-Xuan Jiang.
The New Prime theorem(13)
and .
Academ Arena 2015;7(1s):
16-17].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
13
doi:10.7537/marsaaj0701s15.13
Keywords:
prime; theorem; function; number; new |
Full Text |
13 |
14 |
The New Prime theorem(14)
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that there exist
infinitely many primes such
that each of is
a prime.
[Chun-Xuan Jiang. The
New Prime theorem(14).
Academ Arena
2015;7(1s): 18-20].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
14
doi:10.7537/marsaaj0701s15.14
Keywords:
prime; theorem; function; number; new |
Full Text |
14 |
15 |
The New Prime theorem(15)
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that there exist
infinitely many primes such
that each of is
a prime.
[Chun-Xuan
Jiang.
The New Prime theorem(15).
Academ Arena
2015;7(1s): 21-22].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
15
doi:10.7537/marsaaj0701s15.15
Keywords:
prime; theorem; function; number; new |
Full Text |
15 |
16 |
The New Prime theorem(16):
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R.
China.
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that there exist
infinitely many primes such
that each of is
a prime. [Chun-Xuan Jiang. The
New Prime theorem(16).
Academ Arena 2015;7(1s):
23-23].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
16
doi:10.7537/marsaaj0701s15.16
Keywords:
prime; theorem; function; number; new |
Full Text |
16 |
17 |
The New Prime theorem(17)
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that such that
has
infinitely many prime solutions.
[Chun-Xuan
Jiang.
The New Prime theorem(17).
Academ Arena
2015;7(1s): 24-25].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 17
doi:10.7537/marsaaj0701s15.17
Keywords:
prime; theorem; function; number; new |
Full Text |
17 |
18 |
The New Prime theorem(18)
Hardy-Littlewood
Conjecture
Chun-Xuan Jiang
P. O. Box 3924,
Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract: Using Jiang function
we prove Hardy-Littlewood conjecture
[2].
[Chun-Xuan Jiang. The New Prime theorem(18)Hardy-Littlewood Conjecture
.
Academ Arena
2015;7(1s): 26-27].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 18
doi:10.7537/marsaaj0701s15.18
Keywords:
prime; theorem; function; number; new |
Full Text |
18 |
19 |
The New Prime theorem(19)
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that such that
has
infinitely many prime solutions.
[Chun-Xuan
Jiang.
The New Prime theorem(19).
Academ Arena
2015;7(1s): 28-29].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 19
doi:10.7537/marsaaj0701s15.19
Keywords:
prime; theorem; function; number; new |
Full Text |
19 |
20 |
The New Prime theorem(20)
Hardy-Littlewood prime K-tuple lonjecture
Chun-Xuan Jiang
jiangchunxuan@vip.sohu.com
Institute for Basic Research
Palm Harbor, FL 34682, U.S.A.
Abstract: Using Jiang function we prove that Jiang prime
-tuple
theorem is true[1-3] and Hardy-Littlewood prime
-tuple
conjecture is false[4-8]. The tool of additive prime
number theory is basically the Hardy-Littlewood prime
tuple conjecutre, but cannot prove and count any prime
problems[6].
[Chun-Xuan
Jiang.
The New Prime theorem(20)Hardy-Littlewood
prime K-tuple lonjecture. Academ Arena
2015;7(1s): 30-32].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 20
doi:10.7537/marsaaj0701s15.20
Keywords:
prime; theorem; function; number; new |
Full Text |
20 |
21 |
The New Prime theorem(21)Hardy-Littlewood
conjecture A:
Binary Goldbach conjecture and
Chun-Xuan Jiang
Institute for Basic Research Palm Harbor, FL 34682,
U.S.A.
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove binary Goldbach conjecture
and
[4].
[Chun-Xuan
Jiang.
The New Prime theorem(21)Hardy-Littlewood
conjecture A: Binary Goldbach conjecture and
.
Academ Arena
2015;7(1s): 33-34].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 21
doi:10.7537/marsaaj0701s15.21
Keywords:
prime; theorem; function; number; new |
Full Text |
21 |
22 |
The New Prime theorem(22)
Hardy-Littlewood
conjecture B:
Chun-Xuan Jiang
Institute for Basic
Research, Palm Harbor, FL 34682, U.S.A.
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove Hardy-Littlewood conjecture B: [4].
[Chun-Xuan Jiang.
The New Prime theorem(22)Hardy-Littlewood
conjecture B:.
Academ Arena
2015;7(1s): 35-36].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
22
doi:10.7537/marsaaj0701s15.22
Keywords:
prime; theorem; function; number; new |
Full Text |
22 |
23 |
The New Prime theorem(23)
Hardy-Littlewood
conjecture F:
Chun-Xuan Jiang
Institute for Basic
Research, Palm Harbor, FL 34682, U.S.A.
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove Hardy-Littlewood conjecture F:[4].
[Chun-Xuan Jiang.
The New Prime theorem(23)Hardy-Littlewood
conjecture F:.
Academ Arena
2015;7(1s): 37-38].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
23
doi:10.7537/marsaaj0701s15.23
Keywords:
prime; theorem; function; number; new |
Full Text |
23 |
24 |
The New Prime theorem(24)Hardy-Littlewood
conjecture K:
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove Hardy-Littlewood conjecture K: [4].
[Chun-Xuan Jiang.
The New Prime theorem(24)Hardy-Littlewood
conjecture K:.
Academ Arena
2015;7(1s): 39-40].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
24
doi:10.7537/marsaaj0701s15.24
Keywords:
prime; theorem; function; number; new |
Full Text |
24 |
25 |
The New Prime theorem(25)
Hardy-Littlewood
conjecture M:
Chun-Xuan Jiang
Institute for Basic
Research Palm Harbor, FL 34682, U.S.A.
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove Hardy-Littlewood
conjecture M: [4].
[Chun-Xuan Jiang.
The New Prime theorem(25)Hardy-Littlewood
conjecture M: .
Academ Arena
2015;7(1s): 41-42].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
25
doi:10.7537/marsaaj0701s15.25
Keywords:
prime; theorem; function; number; new |
Full Text |
25 |
26 |
The New Prime theorem(26)
Hardy-Littlewood
conjecture N:
Chun-Xuan Jiang
jiangchunxuan@vip.sohu.com
Institute for Basic
Research, Palm Harbor, FL 34682, U.S.A.
Abstract:
Using Jiang function we
prove Hardy-Littlewood conjecture N: [4].
[Chun-Xuan Jiang.
The New Prime theorem(26)
Hardy-Littlewood conjecture N:.
Academ Arena
2015;7(1s): 43-44].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
26
doi:10.7537/marsaaj0701s15.26
Keywords:
prime; theorem; function; number; new |
Full Text |
26 |
27 |
The New Prime theorem(27)
Hardy-Littlewood conjecture P:
and
Chun-Xuan Jiang
Institute for Basic Research Palm Harbor, FL 34682,
U.S.A.
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove Hardy-Littlewood
conjecture P:
and
[4].
[Chun-Xuan
Jiang.
The New Prime theorem(27)Hardy-Littlewood
conjecture P:
and
.
Academ Arena
2015;7(1s): 45-46].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 27
doi:10.7537/marsaaj0701s15.27
Keywords:
prime; theorem; function; number; new |
Full Text |
27 |
28 |
The New Prime theorem(28)
and
Chun-Xuan Jiang
P.O.Box3924, Beijing100854, P.R. China.
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that
and
have
infinitely many prime solutions.
[Chun-Xuan
Jiang.
The New Prime theorem(28)
and
.
Academ Arena
2015;7(1s): 47-48].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 28
doi:10.7537/marsaaj0701s15.28
Keywords:
prime; theorem; function; number; new |
Full Text |
28 |
29 |
The New Prime theorem(29)
and
Chun-Xuan Jiang
P.O.Box3924, Beijing100854, P.R. China.
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove and
and
.
[Chun-Xuan
Jiang.
The New Prime theorem(29)
and
.
Academ Arena
2015;7(1s): 49-50].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 29
doi:10.7537/marsaaj0701s15.29
Keywords:
prime; theorem; function; number; new |
Full Text |
29 |
30 |
The New Prime theorem(30)
and
Chun-Xuan Jiang
P.O. Box 3924,
Beijing 100854, P.R. China
Jiangchunxuan@vip.sohu.com
Abstract: Using Jiang function
we prove
and
[Chun-Xuan Jiang. The New Prime theorem(30) and
.
Academ Arena
2015;7(1s): 51-53].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 30
doi:10.7537/marsaaj0701s15.30
Keywords:
prime; theorem; function; number; new |
Full Text |
30 |
31 |
The New Prime theorem(31)
and
Chun-Xuan Jiang
P.O. Box 3924,
Beijing 100854, P.R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function
we prove
and
.
[Chun-Xuan Jiang. The New Prime theorem(31) and
.
Academ Arena
2015;7(1s): 54-56].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 31
doi:10.7537/marsaaj0701s15.31
Keywords:
prime; theorem; function; number; new |
Full Text |
31 |
32 |
The New Prime theorem(32)
Chun-Xuan Jiang
P.O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove
(D.
R. Heath-Brown, prime represented by
,
Acta Math., 186(2001)1-84).
[Chun-Xuan
Jiang.
The New Prime theorem(32).
Academ Arena
2015;7(1s): 57-58].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 32
doi:10.7537/marsaaj0701s15.32
Keywords:
prime; theorem; function; number; new |
Full Text |
32 |
33 |
The New Prime theorem(33)
Chun-Xuan Jiang
P.O. Box 3924, Beijing 100854, P.R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove
(J.
Friedlander and H. Iwaniec, The polynomial
Captures
its primes, Ann. Math., 148(1998) 945-1040).
[Chun-Xuan
Jiang.
The New Prime theorem(33).
Academ Arena
2015;7(1s): 59-60].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 33
doi:10.7537/marsaaj0701s15.33
Keywords:
prime; theorem; function; number; new |
Full Text |
33 |
34 |
The New Prime theorem(34)
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that if
then
there are infinitely many primes
such
that each of
is
a prime, if
then
there are finitely many primes
such
that each of
is
a prime.
[Chun-Xuan
Jiang.
The New Prime theorem(34).
Academ Arena
2015;7(1s): 61-63].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 34
doi:10.7537/marsaaj0701s15.34
Keywords:
prime; theorem; function; number; new |
Full Text |
34 |
35 |
The New Prime theorem(35)
and
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function
we prove that there are infinitely many primes
such that
and
are all prime.
[Chun-Xuan Jiang. The New Prime theorem(35) and
.
Academ Arena
2015;7(1s): 64-65].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 35
doi:10.7537/marsaaj0701s15.35
Keywords:
prime; theorem; function; number; new |
Full Text |
35 |
36 |
The New Prime theorem(36)
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that there are infinitely
many primes
such
that each of
is
a prime.
[Chun-Xuan
Jiang.
The New Prime theorem(36).
Academ Arena
2015;7(1s): 66-67].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 36
doi:10.7537/marsaaj0701s15.36
Keywords:
prime; theorem; function; number; new |
Full Text |
36 |
37 |
The New Prime theorem(37)
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that there are infinitely
many primes
such
that each of
is
a prime.
[Chun-Xuan
Jiang.
The New Prime theorem(37).
Academ Arena
2015;7(1s): 68-69].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 37
doi:10.7537/marsaaj0701s15.37
Keywords:
prime; theorem; function; number; new |
Full Text |
37 |
38 |
The New Prime theorem(38)
Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract: Using Jiang function we prove that there are
infinitely many primes
such
that each of
is
a prime.
[Chun-Xuan
Jiang.
The New Prime theorem(38).
Academ Arena
2015;7(1s): 70-71].
(ISSN 1553-992X).
http://www.sciencepub.net/academia. 38
doi:10.7537/marsaaj0701s15.38
Keywords:
prime; theorem; function; number; new |
Full Text |
38 |
39 |
The New Prime theorem(39)
On the
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that if then
there are infinitely many primes such
that each of is
a prime, if then
there are finite primes such
that each of is
a prime.
[Chun-Xuan Jiang.
The New Prime theorem(39)On
the .
Academ Arena
2015;7(1s): 72-73].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
39
doi:10.7537/marsaaj0701s15.39
Keywords:
prime; theorem; function; number; new |
Full Text |
39 |
40 |
The New Prime theorem(40)
On the
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that contain
infinitely many prime solutions.
[Chun-Xuan Jiang.
The New Prime theorem(40)On
the .
Academ Arena
2015;7(1s): 74-75].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
40
doi:10.7537/marsaaj0701s15.40
Keywords:
prime; theorem; function; number; new |
Full Text |
40 |
41 |
The New Prime theorem(41)
On the
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that contain
infinitely many prime solutions or no prime solutions.
[Chun-Xuan Jiang.
The New Prime theorem(41)On
the .
Academ Arena
2015;7(1s): 76-78].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
41
doi:10.7537/marsaaj0701s15.41
Keywords:
prime; theorem; function; number; new |
Full Text |
41 |
42 |
The New Prime theorem(42)
On the
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that contain
infinitely many prime solutions.
[Chun-Xuan Jiang.
The New Prime theorem(42)On
the .
Academ Arena
2015;7(1s): 79-80].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
42
doi:10.7537/marsaaj0701s15.42
Keywords:
prime; theorem; function; number; new |
Full Text |
42 |
43 |
The New Prime theorem(43)
On the
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China.
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we prove that contain
infinitely many prime solutions or no prime solutions.
[Chun-Xuan Jiang.
The New Prime theorem(43)On
the .
Academ Arena
2015;7(1s): 81-82].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
43
doi:10.7537/marsaaj0701s15.43
Keywords:
prime; theorem; function; number |
Full Text |
43 |
44 |
The New Prime theorem(44)
On the
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that contain
no prime solutions or infinitely many prime solutions.
[Chun-Xuan Jiang.
The New Prime theorem(44)On
the .
Academ Arena
2015;7(1s): 83-84].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
44
doi:10.7537/marsaaj0701s15.44
Keywords:
prime; theorem; function; number; new |
Full Text |
44 |
45 |
The New Prime
theorems(45)-(70)
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that the new prime theorems (45)-(70) contain
infinitely many prime solutions and no prime solutions.
[Chun-Xuan Jiang.
The New Prime
theorems(45)-(70).
Academ Arena
2015;7(1s): 85-111].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
45
doi:10.7537/marsaaj0701s15.45
Keywords:
prime; theorem; function; number; new |
Full Text |
45 |
46 |
The New Prime
theorems(71)-(100)
Chun-Xuan Jiang
Institute for Basic
Research Palm Harbor, FL 34682, U.S.A.
Jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that the new prime theorems (141)-(190)
contain infinitely many prime solutions and no prime
solutions.
[Chun-Xuan Jiang.
The New Prime
theorems(71)-(100).
Academ Arena
2015;7(1s): 112-143].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
46
doi:10.7537/marsaaj0701s15.46
Keywords:
prime; theorem; function; number; new |
Full Text |
46 |
47 |
The New Prime
theorems(101)-(130)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Institute for Basic
Research, Palm Harbor, FL 34682, U.S.A.
Abstract:
Using Jiang function we
prove that the new prime theorems (141) -(190)
contain infinitely many prime solutions and no prime
solutions.
[Chun-Xuan Jiang.
The New Prime
theorems(101)-(130).
Academ Arena
2015;7(1s): 144-174].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
47
doi:10.7537/marsaaj0701s15.47
Keywords:
prime; theorem; function; number; new |
Full Text |
47 |
48 |
The New Prime
theorems(131)-(140)
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that the new prime theorems (45)-(70) contain
infinitely many prime solutions and no prime solutions.
[Chun-Xuan Jiang.
The New Prime
theorems(131)-(140).
Academ Arena
2015;7(1s): 175-185].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
48
doi:10.7537/marsaaj0701s15.48
Keywords:
prime; theorem; function; number; new |
Full Text |
48 |
49 |
The New Prime
theorems(141)-(190)
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that the new prime theorems (141)-(190)
contain infinitely many prime solutions and no prime
solutions.
[Chun-Xuan Jiang.
The New Prime
theorems(141)-(190).
Academ Arena
2015;7(1s): 186-236].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
49
doi:10.7537/marsaaj0701s15.49
Keywords:
prime; theorem; function; number; new |
Full Text |
49 |
50 |
The New Prime
theorems(191)-(240)
Chun-Xuan Jiang
P. O. Box 3924, Beijing
100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract:
Using Jiang function we
prove that the new prime theorems (141)-(190)
contain infinitely many prime solutions and no prime
solutions. School of mathematics (institute for advanced
study) has long been recognized as the leading
international center of research and postdoctoral
training in pure mathematics. They should support the
new prime theorems(1)-(240).
[Chun-Xuan Jiang.
The New Prime
theorems(191)-(240).
Academ Arena
2015;7(1s): 237-288].
(ISSN 1553-992X).
http://www.sciencepub.net/academia.
50
doi:10.7537/marsaaj0701s15.50
Keywords:
prime; theorem; function; number; new |
Full Text |
50 |