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Abstract- In this paper, a monotone positive solution is studied for buckling of a distributed model of multi walled 
carbon nanotube (MWCNT) cantilever in the vicinity of thin and thick graphite sheets subject to intermolecular 
forces. In the modeling of intermolecular forces van der Waals forces are taken into account. A hybrid nano-scale 
continuum model based on Lennard–Jones potential is applied to simulate the intermolecular force-induced 
deflection of MWCNT. A positive monotone solution base on Green’s function in the form of a nonlinear iterative 
integral is introduced, to obtain a solution for deflection of MWCNT cantilevers. In order to determine the accuracy 
of presented method, the results are compared with numerical results of a boundary value method as well as other 
methods reported in the literature. The results are show the monotone iterative solution is stable and converged to 
numerical results with a few iterations. The results of present work are useful to prove the stability and convergence 
of Green’s function to deal with deflection of nano cantilever switches in future works and simplifications. 
[Mohammad Ghalambaz, Aminreza Noghrehabadi, Amir vosough. Buckling of multi wall carbon nanotube 
cantilevers near graphite sheets using monotone solution method. Academ Arena 2014;6(7):89-95]. (ISSN 1553-
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 1. Introduction  

Multi walled carbon nanotubes (MWCNTs) have 
attracted considerable attention among other 
nanomaterials. These novel materials can usually be 
visualized as nano-scale concentric cylinders rolled up 
by graphene sheets. MWCNTs are produced by 
different techniques, such as chemical vapor 
deposition, laser ablation, and arc discharge. It has 
been reported that the stiffness, flexibility and strength 
of carbon nanotubes are much higher than the 
conventional materials [1, 2]. Furthermore, nanotubes 
can provide various ranges of conductive properties 
depending on their atomic and geometrical structure 
[3, 4]. The extraordinary properties of MWCNTs have 
motivated worldwide engineers to explore their 
applications in different fields.  

Some nano scale actuator systems have been 
constructed based on single carbon nanotubes and 
nanowires. Nanotube nanotweezers made by attaching 
two individual nanotubes onto a sharp tip was reported 
capable of nano manipulation and electrical detection, 
which was actuated by electrostatic forces between the 
nanotubes [5]. A low-friction, nanoscale, linear 
bearing from an individual multi-wall carbon 
nanotube was reported [6]. Static and dynamic 
mechanical deflections was electrically induced in 
cantilevered multi-wall carbon nanotubes in a 
transmission electron microscope (TEM) [7], while 
double-clamped, suspended, single nanotube and 
nanowire behaved as high frequency resonators [8, 9]. 
Nanotube-based, electrically driven, torsional 

actuators have also been reported [10, 11]. These 
studies showed the potential to construct nano scale 
actuation systems based on individual nanostructures. 
Also, With recent growth in nanotechnology, 
MWCNTs are increasingly used in developing atomic 
force microscope (AFM) probes [1,3, 12,13] and 
nano-electromechanical system (NEMS) switches 
[14–16].  

Consider a typical cantilever MWCNT 
probe/switch suspended near graphite surface with a 
small gap in between. As the gap decreases from 
micro to nano-scale, the van der Waals interaction 
deflects MWCNT to the surface. When the separation 
is small enough, nanotube buckles onto graphite. A 
reliable trend to simulate the deflection of MWCNT 
interacting with extremely large number of graphite 
atoms is to apply nano-scale continuum models. In our 
previous work [17] we utilized a hybrid continuum 
model to investigate the molecular force-induced 
buckling of the cantilever freestanding MWCNT 
probes/actuators suspended over graphite. Then 
buckling of multi walled carbon nanotube (MWCNT) 
probes/actuators in the vicinity of thin and thick 
graphite was carried out for the first time.  The 
governing equation of the distributed model leads to a 
forth order nonlinear differential equation. Because of 
the nonlinearity of governing equations of distributed 
model on the deflection of nanotubes obtaining an 
analytical solution for this type of nanotubes is hard 
and complicated. The obtained non dimensional 
differential equation for large number of graphene 
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layers is the same as the non dimensional governing 
differential equation of nano cantilever beams with 
rectangular cross section subject to Casimir effect and 
neglecting electrical force [18]. Therefore the methods 
which are used to obtain bucking and pull-in 
parameters of nano cantilevers with rectangular cross 
section maybe usable to obtain a solution on the 
buckling of carbon nano tube cantilevers. In order to 
study the deflection and pull-in parameters of nano-
cantilever beams with rectangular cross section, some 
investigators assumed the electrostatic and 
intermolecular forces uniform along the beam [19-23 ] 
and some of them, used distributed models [18,24,25]. 
Some researchers [17, 18,26] tried to find semi 
analytical solutions for this problem using Adomian 
decomposition method and some others tried to find 
approximate solutions [18-24, 25,27]. Most of the 
approximate solutions (i.e. solution of distributed 
model) are base on Green’s function and then some 
simplifications [17, 18, 24, 25]. But they never 
attempt to solve obtained Green’s function directly 
with out any simplifications. Existence of monotone 
positive solution for a class of beam equations has 
been investigated by previous researchers [28-36]. 
Unfortunately the governing equation of nano-beam 
can’t be categorized in any of the maintained works 
(i.e. [28-36]). Abaydan [17] and Ramezani [24, 25] 
used Greens function method with a simple second 
order polynomial as shape function to obtain 
deflection and pull-in parameters of MWCNT 
cantilevers and nano beam cantilevers, respectively. 
However, their results on the calculating of deflection 
in comparison with numerical results are acceptable 
but their accuracy is not perfect. 

In the present work, a monotone iterative 
solution basis on Green’s function is introduced and 
solved directly to obtain buckling of MWCNT 
cantilevers. The results are compared with numerical 
results as well as simplified Greens function method 
those in [17] and with power series results in [26]. 

 
 2. Mathematical model 

Figure 1 shows a schematic of a typical 
freestanding MWCNT near a surface consisted of N 
graphene layers, with interlayer distance d = 3.35Å. 
The length of MWCNT is L, the mean value of their 
radius is RW, the number of walls of nanotube is NW, 
and the gap between MWCNT and the surface is D. 
 
Elastostatic domain 

Based on continuum mechanics, a MWCNT is 

modeled by concentric cylindrical tubes. Young’s 

modulus of MWCNT, Eeff, is typically 0.9–1.2 TPa 
[37] and the cross-sectional moment of inertia I is 
equal to π (Ro

4 - Ri
4)/4 [17]. By applying the Euler 

theory and neglecting the effect of large displacement 

(finite kinematics) for L/De>10 [22-23], the governing 
equation of a cantilever MWCNT can be defined as 
following boundary value differential equation [17] 
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where X is the position along MWCNT measured from 
the clamped end, U is the deflection of MWCNT and 
qWdv is the intermolecular force per unit length of 
MWCNT . According to our previous work [17], qWdv 
base on double-volume integral of Lennard–Jones 
potential in [38-40] and some simplification can be 
represented as follow 
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Figure. 1. Schematic of a  MWCNT over graphite 

ground plane. 
 

In the above equation, C6 = 15.2 eV Å6 is the attractive 

constants for the carbon–carbon interaction, [41] and 
σ≈38nm-2 [38] is the graphene surface density. By 
substituting (2) in (1) and using the following 
substitutions the dimensionless form of  (1) can be 
obtained. 
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In the following text, n = 4 and n = 5 correspond to 

the large number and small number of graphene layers, 
respectively. These transformations yield, 
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In all equations, prime denotes differentiation with 
respect to x. 
 3.Mathematical approach 

According to Green’s function method, the 
response of a system to an arbitrary load can be 
constructed using the load distribution and the 
response to a concentrated load [25-27]. The 
concentrated load at x = s is modeled using Dirac delta 
function  sx  . By replacing the right hand side of 

equation (4-a) with  sx  , and u with G, the 

following is obtained 

 sx
dx
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which models a cantilever nano-beam with a 
concentrated load at x = s. The solution to this problem 
(Green’s function) is 
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The coefficients ik  and ip in (6) are unknown 

constants. By imposing the boundary conditions at x=0 
and x=1 we obtain 
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Equation (7) contains four unknown constants (k0, k1, 
p2, p3). These constants can be determined from 
remaining conditions. Three conditions comes from 

continuity of nano-beam shape and its first and second 
derivatives at s, so we have 
 

             sGsGsGsGsGsG ,,    

(8) 
 
The forth condition comes from integrating (5-a) 
across the point s to obtain the following 
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where the minus and plus indicate the left and right of 
s, respectively. By applying (8) and (9) on (7) we 
obtain 
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Now, the derived Green’s function is used to construct 
a solution to our no uniformly distributed loading 
problem. Multiplying (5-a) by u and (4-a) by G, 
subtracting the two equations, and integrating from x 
= 0 to x = 1, leads to 
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Integrating the left-hand side of (11) by parts and 
applying the boundary conditions (4-b) and (5-b), then 
using symmetric property of G(x, s) then renaming the 
variables, leads to 
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This is the integral representation of the nonlinear 

differential equation (4). Unfortunately, (12) is an 
implicit integral equation. This equation can be written 
in an iterative form [29, 42] as 
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The iterative solution can starts from an initial guess. 
Hence, we take u0(x) = x/3 and u0(x) = 0. In the next 
section, (4) will be solve by using (13) for f*

n=0.5 and 
also for a range of f*

n. The results of monotone solution 
are compared with results of boundary value solution.  
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 4. Results 
The first iterative solution of equation (4) 

starting from u0(x) = 0 leads to the following analytical 
equation 

 
2464

432
1 xxx

xU             (14) 

 
Symbolic calculation of second and higher 

iterations of u(x) is very complicated so numerical 
integration is needed. In order to calculate integrals of 
(13) numerically, the adaptive Simpson quadrature 
integration method is used. In order to verify 
convergence and convergence rate of the monotone 
method, (4) solved for with f*

n=0.5 for small and large 
number of graphite layers which are used in [17]. 
Figure (2) and figure (3) show the centerline deflection 
of MWCNT cantilever nanotube for f*

n=0.5 and small 
number of graphite layers, by using monotone method 
starting from u0(x) =0 and u0(x) =x/3, respectively. In 
these figures the results of different iterations are 
compared with numerical solution. Table 1 compares 
the tip deflection of nanotube cantilever obtained using 
monotone solution (by different starting values) with 
numerical results and Adomian series size of 10 those 
on [17].  Numerical results are obtained using a 
combination of trapezoid as base scheme and 
Richardson extrapolation as enhancement scheme [43, 
44]. 

 
Figure 2: Buckling of MWCNT cantilever with large 

number of graphite sheets (i.e. n = 4) when fn = 0.5 for 
to different iterations of monotone solutions and 

different starting values. 
 

It can seen in table 1 the accuracy of 
monotone solution with starting from u0(x) =0 is more 
than those starting from u0(x) =x/3. Therefore, u0(x) =0 
is chosen in later calculations. Figure (4) shows the 
variation of cantilever tip deflection as a function of f*

n 
for large numbers of graphite layers and small number 
of graphite layers. Figure 4 compare centerline 
buckling of nanotube obtained by monotone method 
with numerical results as well with Green’s function 
and Adomian those on [17, 26] and series solution 
[26].  

 
 

Table 1: the variation of tip deflection of a typical MWCNT cantilever obtained using different iterations and 
different start values for fn=0.5. The iterative solution converges to the numerical solution as the number of the 
iterations increase.  
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Figure 3: Buckling of MWCNT cantilever with small 
number of graphite sheets (i.e. n = 5) when fn = 0.5 for 
to different iterations of monotone solutions and 
different starting values. 

 

 

 
Figure. 4. Comparing the tip buckling of 
MWCNTcantilever obtained by monotone solution 
with u0(x) =0 with other methods for (a) Large number 
of graphite layers (i.e. n=4) (b): Small number of 
graphite layers (i.e. n = 5) 
 
 5. Conclusions 

In this paper, a monotone positive solution is 
studied for buckling of MWCNT cantilevers with 
small and large number of graphite layers subject to 
distributed electrostatic force and van der Waals 
attractions. The governing differential equation is 
forth order and nonlinear due to the inherent of the 
van der Waals and electrostatic interactions. The 
nonlinear differential equation is transformed into an 

implicit nonlinear integral equation using Green’s 
function. The nonlinear integral is written in an 
iterative form then solved numerically. The monotone 
solution needs initial guess. Convergence of the 
solution using the possible initial guesses including 
u0(x) =0 and u0(x) =x/3 were examined. The obtained 
results are compared with numerical ones. The results 
show, by using u0(x) = 0 in the monotone method, the 
solution for buckling of MWCNT cantilevers will be 
converge to numerical results with less iteration than 
using u0(x) = x/3. As seen in figures and table 1, 
monotone solution after a few iterations almost 
converged to the numerical results. Furthermore, 
accuracy of monotone method is better than Adomian 
method. Therefore, the monotone iterative solution 
can provide an accurate and stable solution for study 
of MWCNT cantilevers.  
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